Faculty Directory

Krishnaprasad, P. S.

Krishnaprasad, P. S.

Professor
Electrical and Computer Engineering
The Institute for Systems Research
Maryland Robotics Center
Brain and Behavior Institute
2233 A.V. Williams Bldg.

P. S. Krishnaprasad received his Ph.D. degree from Harvard University in 1977. He was on the faculty of the Systems Engineering Department at Case Western Reserve University from 1977 to 1980. He has been with the University of Maryland since August 1980, where he has held the position of Professor of Electrical Engineering since 1987, and a joint appointment with the Institute for Systems Research since 1988. He is also a faculty member of the Program in Applied Mathematics and Statistics, and Scientific Computation, and the Program in Neuroscience and Cognitive Science. Since 1987 he has led the Intelligent Servosystems Laboratory.

Krishnaprasad has held short and long term visiting positions with Erasmus University (Rotterdam); the Department of Mathematics, University of California, Berkeley; the University of Groningen (the Netherlands); the California Institute of Technology; the Mathematical Sciences Institute at Cornell University; and the Mechanical and Aerospace Engineering Department at Princeton University.

Krishnaprasad's research interests lie in the broad area of geometric control theory and its applications. His past contributions include geometry of parametrization problems in linear systems, the Lie algebraic foundations of certain nonlinear filtering problems pertaining to system identification, the Lie theory and stability of interconnected mechanical systems (e.g., spacecraft with elastic attachments, spinning rotors, and fluid-filled cavities), and symmetry principles in nonlinear control theory. He has also investigated mathematical problems in the kinematics and control of robot manipulators, the real-time control of flexible robot arms with end-point sensing, tactile perception, and the development of symbolic algebraic tools for design and control. In the last several years, his interests have drawn him to: problems of modeling, design, motion planning and control, arising in mobile robotics (legged and wheeled vehicles, autonomous underwater vehicles and autonomous aircraft); geometric methods in nonlinear dynamics; wavelet analysis for signals and systems; intelligent control architectures, in part inspired by biological paradigms such as central patterns generators and neural networks; the technology and theory of smart materials such as piezo-electric and magnetostrictive materials for use in actuation and sensing; problems of integration of actuators and sensors in control networks; and modeling, simulation, monitoring and control in semiconductor manufacturing processes, such as rapid thermal chemical vapor deposition.

A central interest in geometric control theory, geometric mechanics, Lie groups, and distributed parameter systems, guides the technical approaches taken to attack problems in the above areas. Additionally, some of this work is also linked to the experimental efforts in the Intelligent Servosystems Laboratory.

P. S. Krishnaprasad was elected a Fellow of the IEEE in 1990 for his contributions to geometric and nonlinear control and engineering education. He was appointed a 1998-2000 Distinguished Faculty Research Fellow of the University of Maryland. He was a member of a team recognized by American Helicopter Society's Grover E. Bell Award (2002) (for work on smart structures during 1991-96) bestowed on the Alfred Gessow Rotorcraft Research Center. He was the Munich Mathematical Colloquium Lecturer (October 24, 2006). He is the recipient of the 2007 Hendrik W. Bode Lecture Prize of the IEEE Control Systems Society, for fundamental contributions to the theory of control of natural and synthetic physical systems.

Honors and awards

    •    IEEE Control Systems Society Hendrik W. Bode Prize (2007)
    •    Distinguished Faculty Research Fellow (1998-2000)
    •    Outstanding Systems Engineering Faculty Award, Institute for Systems Research, University of Maryland (1990-1991)
    •    IEEE Fellow (1990)

 

 

Geometric control theory and filtering theory; control of infinite dimensional systems; system identification and model reduction; geometric mechanics; dynamics of nonholonomic systems with symmetries; dynamical systems on Lie groups and optimal trajectory generation

Control problems arising in complex multi-body systems (e.g. spacecraft with deformable elastic attachments and fluid filled containers, underwater vehicles)

Problems of modeling, design, motion planning and control, arising in mobile robotics and robotic manipulation; sensors and actuators for robotic end-effectors; motion control for nonholonomic robots; under-actuated autonomous robotic vehicles; GPS-aided navigation of mobile robots

Time-frequency methods for the analysis of signals and systems (e.g. wavelet basis representations); exploitation of auditory-physiological insights in time-frequency analysis of acoustic data; independent component analysis;

Intelligent control architectures for complex systems inspired in part by biological paradigms such as central pattern generators, and space maps associated to auditory and other sensory modalities; learning binaurally directed movement; sensorimotor feedback in echo-locating bats; hybrid models for networks of sensors and actuators; languages for motion control

Technology of smart materials such as piezo-electric and magnetostrictive materials for use in actuation and sensing; nonlinear problems in such materials; hysteresis modeling and compensation; integration of such materials in structures (e.g. networking); computational methods in ferromagnetism with applications to the design of Terfenol-D actuators

Intelligent processing of materials with a special focus on semiconductor manufacturing; modeling, simulation, monitoring and control in semiconductor manufacturing processes, such as rapid thermal chemical vapor deposition; epitaxial growth of thin films and surface reconstruction in epitaxy

Dynamics and control of formations, swarming, flocking and related biological phenomena; acoustics and biological signal processing; pursuit phenomena and prey capture behavior in nature; evolutionary game-theoretic basis for strategies of pursuit; analysis of field data on starling flocks; inverse problem of reconstructing interaction laws for collectives; cognitive cost of flocking as measured by generative models from data; continuum models of flocks

Subriemannian geometry and optimal control in the study of collectives, and for the design of efficient, nanoscale heat engines; critical dynamics in field theory and related optimal control problems

The research interests described above are supported by a program of experimental investigations in the Intelligent Servosystems Lab (ISL) where, in the period 1986 – 2019, the projects included; experiments in positioning, vibration suppression and impact control of a flexible arm with embedded actuators; mechanical manipulation with a modular hand invented in ISL; a hybrid (piezoelectric-magnetostrictive) motor invented in ISL; nonholonomic robot design; a parallel linkage manipulator invented in ISL; 3-D solid modeling and graphical animation; and motor networks. The primary current emphasis in ISL is on mobile robotics and software for control of collectives of robots. A Vicon motion capture system was installed in 2013 to study collective behavior of robots, and is used to validate principles and algorithms applicable to biological and robotic collectives


ECE and ISR alumni feature prominently at American Control Conference

Xiaobo Tan, Sean Andersson and Fumin Zhang played key roles at the conference.

The Falcon and the Flock

Complex aerial displays of starling flocks mitigate the risk of predation. New paper suggests cognitive cost is a way to explore the phenomenon of the confusion effect.

Alumnus Udit Halder’s work published as cover article in Proceedings of The Royal Society A

Now a postdoctoral researcher, Halder and his UIUC colleagues developed mathematical models and control based on flexible octopus arms.

Alum Vikram Manikonda named CTO of BlueHalo

Manikonda is the former president and CEO of IAI, acquired by BlueHalo in 2021.

Alum George Kantor working on AI for agricultural robotics

Kantor is leading Carnegie Mellon University’s work in a new AI Institute for Resilient Agriculture, a joint initiative of the USDA and NSF.

Alum Xiaobo Tan named to Richard M. Hong Endowed Chair at MSU

At Maryland, Tan was advised by Professor John Baras and Professor P. S. Krishnaprasad.

NASA's Perseverance launches to Mars; alumnus work aboard

Alumnus Philip Twu worked for three years on the Perserverance rover's navigation system.

Alumna Sara Pohland to continue studies as NSF Graduate Research Fellow

Pohland will attend the University of California, Berkeley, pursuing research in robotics.

Alumnus Kevin Galloway earns tenure at the U.S. Naval Academy

Galloway is a 2001 EE Ph.D., advised by Professor P.S. Krishnaprasad (ECE/ISR).

ISR/ECE alumni collaborate on control paper published in PRS-A

Kevin Galloway and Biswadip Dey were advised by Professor P. S. Krishnaprasad and worked in the Intelligent Servosystems Laboratory.

Discoveries from NASA's Parker Solar Probe published in Nature

ISR alumnus Philip Twu helped develop the probe at the Johns Hopkins University Applied Physics Laboratory.

Alumnus Xiaobo Tan elevated to ASME Fellow

Tan was recognized for his work in robotics.

Shoukry, Krishnaprasad receive NSF grant for resilient-by-cognition cyber-physical systems

The researchers will equip autonomous systems with an additional layer of intelligence to improve safety and resilience.

Alumnus Philip Twu's exciting career in space robotics

Twu has worked on both the Parker Solar Probe and the 2020 Mars Rover.

Alumnus Xiaobo Tan named Withrow Distinguished Scholar at Michigan State

The award recognizes the scholarship of senior faculty members in the MSU College of Engineering.

Alumni Naomi Leonard and Xiaobo Tan part of public lecture on underwater robotics

The lecture was part of the Halcyon Dialogues on Robotics held at AAAS headquarters in Washington, D.C.

Alumnus Fumin Zhang promoted to full professor at Georgia Tech

His research interests are in the design and control of marine robots and mobile sensor networks, as well as cyber-physical systems theory.

Alumna Naomi Leonard wins Hendrik W. Bode Lecture Prize

IEEE Control Systems Society prize recognizes distinguished contributions to control systems science or engineering.

Alumnus Xiaobo Tan elevated to IEEE Fellow

His citation reads, “for contributions to modeling and control of smart materials and underwater robots.”

Small collectives and nonlinear dynamics

New paper by Krishnaprasad, Galloway, Justh published in Proceedings of the Royal Society A.

Alum Xiaobo Tan named 'Foundation Professor' at Michigan State

Tan develops bio-inspired underwater robots, electroactive polymer sensors and actuators.

Naomi Leonard to be inducted into Innovation Hall of Fame

Clark School honoring alumna for work in cooperative control

Alumnus Xiaobo Tan promoted to full professor at Michigan State

Tan earned a 2002 Ph.D. in electrical engineering from the University of Maryland.

Optimal control and strong interactions imply flock cohesion

New work suggests that copying behavior in social groups may be governed by optimal control theory

Workshop on Geometry of Collective Behavior organized by P. S. Krishnaprasad

The workshop was part of the 53rd IEEE Conference on Decision and Control.

Alumnus Matteo Mischiati is lead author of sensorimotor control study in Nature

Research shows dragonflies use predictive control strategies, not just simple reactions, to capture prey.

Alum Dimitris Tsakiris improves propulsion of robotic octopus

Paper is finalist for two awards at IROS 2014.

Alum Xiaobo Tan developing robotic fish to 'stalk' real fish in the Great Lakes

The MSU professor's fish will track the movements of lake trout, walleye and lake sturgeon.

Galloway, Justh, Krishnaprasad publish chasing and flocking research in Proceedings of the Royal Society A

New models and equations aid in understanding of natural phenomena, has implications for engineered networks of robots.

UAE students, Northrop Grumman engineers tour robotics laboratories

Visitors were in town for the annual AUVSI conference.

Alum Xiaobo Tan improves robotic fish

Fish now can glide for long distances.

MERIT-BIEN and TREND Fair Showcases Undergraduate Research

More than 20 undergraduate students participate in research projects sponsored by ECE and IREAP.

Krishnaprasad awarded AFOSR DURIP for collective behavior testbed

System will include mobile robots, cameras and enhanced computational resources.

Alum Sean Andersson earns tenure at Boston University

Former student of P. S. Krishnaprasad has research interests in systems and control theory.

Krishnaprasad delivers Princeton Baetjer Colloquium lecture

Was named to the 2012 Baetjer Colloquium Lectureship for contributions to geometric control, filtering theory, robotics and bio-inspired design.

Alum Xiaobo Tan's research featured in NSF Highlight

Story features Tan's artificial muscle-enabled robotic fish.

Alum Kevin Galloway starts postdoc at University of Michigan

Former student of P. S. Krishnaprasad will develop feedback controls for bipedal robots.

Alum Fumin Zhang wins ONR Young Investigator Program award

Former student of P.S. Krishnaprasad is one of only 17 recipients nationwide.

Paper by Krishnaprasad, Justh, Wei published in Proceedings of the Royal Society A

Paper offers possible evolutionary basis for flight behavior in echolocating bats.

Krishnaprasad gives inaugural Cymer Distinguished Lecture

Cymer Center for Control Systems and Dynamics

Alumnus Xiaobo Tan receives ONR grant for biomimetic robotic fish

Robots are based on biological principles and incorporate biomimetic electroactive polymers.

P.S. Krishnaprasad gives Bode Lecture

Winner of 2007 Bode Prize spoke at 46th IEEE CDC Conference.

Stealth strategy paper by Justh, Krishnaprasad published

Researchers develop simple model that represents the engagement of pursuing bats and their insect prey

Abed, Baras, Krishnaprasad, Justh speak at swarming workshop

Speakers apply natural behaviors to networked groups of autonomous vehicles

ISR alum George Kantor co-authors new robotics book

Principles of Robot Motion includes theory, algorithims and implementation

Horiuchi, Krishnaprasad receive $286,000 AFOSR grant

Research to focus on "Neuromorphic VSLI-Based Bat Echolocation for Micro-Aerial Vehicle Guidance"

Leonard conducts underwater robotics research

Team launched fleets of underwater vehicles into the Pacific Ocean

Shamma, Horiuchi, Baras, Krishnaprasad, Moss awarded acoustic sensors contract

Team will develop intelligent and noise-robust interfaces for MEMS acoustic sensors for DARPA

  • Fellow, 1990