Event
ONLINE Lockheed Martin Robotics Seminar: "Learning and Using Composable Robot Skills"
Friday, April 17, 2020
3:00 p.m.
2121 JM Patterson
Ania Picard
301 405 4358
appicard@umd.edu
Lockheed Martin Robotics Seminar Series
https://umd.zoom.us/j/587142386?pwd=OHJvQ2lRUmNRMm04MnpUYW9WZUlNZz09
Meeting ID: 587 142 386
Password: 804306
One tap mobile
+13126266799,,587142386# US (Chicago)
+19294362866,,587142386# US (New York)
Learning and Using Composable Robot Skills
Tomas Lozano-Perez
The School of Engineering Professor in Teaching Excellence
MIT Learning & Intelligent Systems Group
Computer Science & Artificial Intelligence Laboratory
Abstract
We would like to augment the basic abilities of a robot by learning to use new sensorimotor primitives (skills) to enable the solution of complex long-horizon problems. However, solving long-horizon problems in complex domains requires flexible generative planning that can combine primitive abilities in novel combinations to solve problems as they arise in the world. In order to plan to combine primitive actions, we must have models of the preconditions and effects of those actions: under what circumstances will executing this primitive achieve some particular effect in the world?
This talk will describe methods for learning the conditions of operator effectiveness from small numbers of expensive training examples collected by experimentation on a robot. I'll demonstrate these methods in an integrated system, combining newly learned models with an efficient continuous-space robot task and motion planner to learn to solve long horizon problems. The talk will also overview how we can use previous planning experience to help plan more efficiently,
Host
Mumu Xu and Pratap Tokekar
Biography
Tomas Lozano-Perez is currently the School of Engineering Professor in Teaching Excellence at the Massachusetts Institute of Technology (MIT), USA, where he is a member of the Computer Science and Artificial Intelligence Laboratory. He was a recipient of the 2011 IEEE Robotics Pioneer Award and a 1985 Presidential Young Investigator Award. He is a Fellow of the AAAI, ACM, and IEEE.