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The .
Institute for

Systems Motivation

« Safety
— U AVS in comm erCi al “SERIOUS RISK OF COLLISION”
airspace

— Autonomous vehicles &
human-driven cars

« Human involvement

— Safety Is critical and
fundamental

* Physical limitation

— To avoid states that lead
to unavoidable collision
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The .
Institute for

Systems Motivation

« Synthesize plan from task
specifications
— Agriculture monitor
— Security and surveillance
— Search and rescue
— Disaster relief / Emergency
communications

« Perform task in an optimal
manner with given time
constraints and other
specs
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Sudtiins Motivation: Human-Robot
Collaboration and Safety

Research
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Motivation: Learning Tasks, @/
Changing Environments s

Teach through demonstrations
o Easy training, hard to generalize to new constraints

Program planning techniques
o Generalize to constraints, manually design objectives
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Syl Motivation: Collaborative
Autonomy and Trust

Research
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s on Motivation: Future Networks Automation ---
Systems

5G, SDN, NFV, MEC, loT, Naas,...
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* Internet and Telecom convergence — Integrated networks: Future
Internet

- Novel services, applications and communication paradigms

élo'l’) and Smart cities, M2M and Vehicular
commu|?|catlons, ontentl media oriented commumcatlons, Social
networks,

= Internet of Everything (loE), etc.
nﬁ !s and services

- Fog/Edge Computing /Mobi uting /Cloudlets
« Software Defined Networks (SDN)
» Network Function Virtualization (NFV)

« Advances in wireless technologies: 4G-LTE, LTE-A, WiFi, 5G

= Internet of Things

- Novel, emergent te *hnologies are changing

architectures -
= Supporting technologies

» Cloud Computing

Copyright © John S. Baras 2020



Theé: .
Institute tor

Systems Key Challenges Addressed

« Safe behaviors — can they be learned?
— UAVs in commercial airspace
— Autonomous vehicles & human-driven cars

 Human-machine collaboration — off line and on-
line learning — is it safe?
— Safety Is critical and fundamental

* Physical limitations

— To avoid states that lead to unavoidable faults,
collisions, wrong behavior — Prediction? How fast?
How accurate?

Copyright © John S. Baras 2020 9



Assured Autonomy : Spatial and
Temporal Tolerances

— Avrtificial potential based method

— Reachable set based verification

— Control synthesis using optimization

— Mixed integer optimization based method
— Timed automata based method

Tan, Xi, Zhou, Maity, Baras, several papers 2015 -2019 Copyright © John S. Baras 2020
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the Monitoring Airspace 5

Institurte for

Systems ,

Rescarch by U AVS 7

Fast Moving aircraft
in 2D projection
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e Autonomy via

‘ Potential Functions 7 R
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UAS agents avoid one another.
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e Autonomy via @

Potential Functions X
Na 5
‘Ja(xa):Zbif(Xa’Xai’Vri - ‘Xa_xya 5
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5

Gradient pushes UAS out of tﬁe way of piloted aircraft.
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Multiple Collaborating

Systems

Research

Vehicles
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Mission

Autonomous, distributed maneuvering of a vehicle group to reach and

cover a target area

Constraints
Desired inter-vehicle distance
Obstacles avoidance

Threats (stationary or moving) avoidance

Requirement
Using only local or static information

Target f, R
40 N a2l
30
Obstacle
20
& B
10 & 4
- .
%‘ Mobile nodes
0 | | | |
0 10 20 30 40

Copyright © John S. Baras 2020

15



q\:,HSJ’rJ/

sydisms  Artificial Potentials — @
Gradient-Flow Approach Ko

Research
Dilemma of the Deterministic gradient-flow approach
Potentials-based approach can accommodate multiple objectives and
constraints in a distributed and computationally effective way
The system dynamics could be trapped by the local minima
Weighted sum of potential functions:

Ji 1 (G) = 4,37 (9) + 4,3, (G) + 4,37(9) + 4.3 °(q;) + 4, 3,7 ()

Target (attraction) potential J9
Neighbor (avoidance) potential J"
Obstacle potential J°

Potential J® due to stationary threats
Potential J™ due to moving threats

Gradient flow:

aJ; . (q;)
oq

qi(t):_

Copyright © John S. Baras 2020 16
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Being Trapped by Local Minima
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Different initial conditions may cause vehicles to be trapped by local minimum

Copyright © John S. Baras 2020
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The: .
Institurte for

Systems  Modeling a Swarm as a GF

2D mission space on discrete lattice cells

o Agent s can communicate with
neighboring agents in N, which stay
within the interaction range R,

o An agent can go at most R, within one
move, which defines the phase space /.

o Gibbs potential is designed to reflect
global objective

U(x)=> ¥ (x),

ceC

cI)s (X) = Z LIJc (Xs ! XN(s))

ceCy
=38 + 4,30+ 2]
Difficulties in applying classical results

o Non-stationary neighborhood system
o Time-varying and state-dependent phase space

Copyright © John S. Baras 2020
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e ANimation of Sequential Gibbs

Systems

Rescarch Sampling Algorithm

Copyright © John S. Baras 2020 19
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i o Stochastic Path Planning S
yslemp . , : @; -
Simulation +

Stochastic path exploration based on MRF can lead multiple
vehicles getting around the obstacles

Potential function
D (x)=2,d + 2,30+ 2,d!

» Target (attraction) potential J¢
* Neighbor (avoidance) potential J"

» Obstacle potential J°

Copyright © John S. Baras 2020 20
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Systems Simulation: Gathering

Research

ooooo

specified center Z,=(25,25) unspecified center

200 nodes on 50 by 50 grid ; A;,=0.05, A\, =1, A =103
R.=2v2,R=6v2 ; T(n)=1/(4log(400+n))

Copyright © John S. Baras 2020 21
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systsms Simulation: Line Formation

Research
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4

One line

Two lines

Three lines

200 nodes on 50 by 50 grid
A=10, A=5

R =22

R=10v2, 6v/2, 4V/2
T(n)=1/(41og(400+n))

Copyright © John S. Baras 2020
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Sensor Errors and Noise — @

Systems .

Learning and Robustness + s

UAVS learn environments from sensors

Issues in practice
Cost-effective sensors are preferred
Noises introduced by sensors may affect decision process

Robot
Environment ™™  Sensors Decision ) Actions

=H_ ]

Measurements [ Perception

Copyright © John S. Baras 2020 23



oo Reachability Analysis
ystems .
for the Nonlinear System

Research

e Linearization
X(t) = f(X,u,x,)

= £ u%, X)) +V, f|  (x=x?)()+V, | (u—-u*)(t)
+ higher order term,
X(0) e X, u(t) e U
» Separation

R([(k—1) k- r])—>

— Enlarge by inputs P
Conv
— Enlarge by ﬁ Hull of
i 179t R((k—1)-r).
linearization A S
error R((k —1)-7)
enlarging

) @ ©

Image courtesy of [Althoff 2010]: Safety Verification of Autonomous Vehicles for Coordinated Evasive Maneuvers
Matthias Althoff, Daniel Althoff, Dirk Wollherr and Martin Buss

Copyright © John S. Baras 2020 24



Sl . Collision Avoidance of Two UAVS

et with Time Varying Control Tubes

= \We seek a control set update rule
design for ego aircraft in a non-
collaborative setting

=  Guarantee collision avoidance with reachable tube
of the intruder aircraft

= The control constraint set should be time varying

= Collision avoidance at every time instance

= Seek a tighter control constraint set
such that

= Collision free from predicted reachable set of
intruder at all times

= The control set should be as large as t=0,_
possible. T el ger terel

= Variation in the control set should be small

Copyright © John S. Baras 2020 25



Path Planning with Space and
Temporal Logic Constraints

* Problem: How to generate

trajECtOry/path based on tempOI'a| § e .......... C ....................
specifications such as ordering, NI U I
repetition, safety? ) ]
. State of the art: motion planningwith =T [ f
temporal constraints without duration, 2 N -
such as Linear Temporal Logic (LTL). I
« Two methods for timed temporal logics, ° ° xm ° °
such as Metric Temporal Logic(MTL): Task: Always visiting

— An optimization based method area a,b,c and stay there

— A timed-automata based method for at least 2s. Always
avoiding obstacles

Copyright © John S. Baras 2020 26



it Metric Temporal Logic (MTL) @,
©  and Time Constrained Task  “o7

Definition: The syntax of MTL (MITL) formulas are
defined according to the following grammar rules:

pu=T|n|-p|lpVe|pUd

where I € [0, oo] is an interval with end points in N U
{oo}and the end points have to be distinct. w € I is the
atomic prOpOSItIOn

More sophisticated MTL (MITL) operators can be derived
using the grammar defined above; such as: always in I; =1
U,,, eventually always ¢, 0O, etc.

Copyright © John S. Baras 2020 27



Optimization Based Method

ml}n J(x(t,u), u(t))
Subjectto x(t+ 1) = f(t,x(t), u(t))
Xt E @

Remark:

The task ¢ may be a finite duration task within an
Infinite time horizon task such as surveillance, periodic

tasks etc.

Copyright © John S. Baras 2020 28
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gttt From MTL Constraints to Linear @
ystems _ s 0
Constraints Ol

Research /‘é@
ARyLY

A polygon can be represented as intersections of several half-
planes.

The constraint zf = 1 iff h] x(¢t) < k; is enforced by the linear
constraints:

hlx(t) < k;+M(1—z) .
hl x(t) = k; — Mz} + € (1)

where M Is a very large positive number and € Is a very small
positive number, and z; € {0,1}.

Let P =n!, H; be a polygon with H; = {x| h] x < k;}.
Define P = AlL, z/, then P/ = 1iff x(t) € P.

Copyright © John S. Baras 2020 29



Modification of Original Problem into MILP

u,zo,..gll%lrel{o,ﬂp J(x(t,w), u(t))

Subject to x(t+1) = f(t,x(t),u(t))
L(x(t),z;,t) <0 Vte]|0,N]

The timed temporal constraint x, = ¢ can been converted into
the linear and integer constraints.

Remark:

If J(-,) f(.,.,.) are linear functions of x(t) and
u(t), then entire problem will be a Mixed-Integer
Linear Optimization Problem.

Copyright © John S. Baras 2020
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Results and Discussion

 Specification in MTL
¢1 =QU,21A A OUjg 21 B
N OD[O’Q]C A =0

* The resulting
trajectory for the
linearized quadrotor
dynamics, projected Iin
2D.

2D projection of the trajectory of the
guadrotor satisfying the task.

Copyright © John S. Baras 2020 31



Results and Discussion

 Specification in MTL

¢1 =QU,21A A OUjg 21 B
N OD[O,Q]C A -0

« 3D Trajectory

— The trajectory avoids
the obstacle region in
time and space

= 3040 ]
p

® 9
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Manipulation Task Planning via Model Checking

* Manipulation Task:
Do not grasp until reaching the object position, grasp the object within [5,10] and avoid obstacles

e« MITL: @ = (—grasp Upos_object) A (0[5’10] grasp) A (O—pos obs)

UPPAAL
MITL specifications S elchack Vianipulator Mode
(Timed automata) —— odel-Checking -
[Maller, 2006] Algorithm (Timed automata)

Execution sequence satisfying the MITL formula is synthesized using the UPPAAL tool

Location States Action States

Hold

oA Ay
I.-’J Y
{ ! / \
- o
" g il 7
Move | | Carry ; N, iy Vid /
/,’ // /.
4 _/'
_ J# »
; P y
Mee || Carry ¢ i 7
Ao
o | Iy
Pos_Object Pos_Goal 3
e || Carry , Mowe || Car? o ’
9 ‘
: \ ]
o Lt

Lin and Baras, 2019 IEEE Systems Conference Copyright © John S. Baras 2020
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Agent Model in UPPAAL

 Clock constraints not shown on the figures. Assume all transitions take 1 sec.

Each node is a location-action pair.
Some transitions are not possible: (pos0, hold) = (pos1, hold) or (pos0, move) = (pos0, move)

Lin and Baras, 2019 IEEE Systems Conference Copyright © John S. Baras 2020 34



UPPAAL Solution: Case Study

@ = (- grasp Upos_object) A (0 [5,10]grasp) A (O—-pos obs)

E -
W)= NS ARY
Lk S b o S mi)—»ﬁmu‘
) \
\

B e 7
2[0)= 0 = x| /
"R 01 Pu Theafuoa s fLbC pof

[/

((pos_init, hold), t=0)
((pos_init, hold), t € [0,1])
((pos_init, mlove), t € [1,2])
((IDOS_ObJ'eCtlmOVG), te[23])
((pos_object, hold), t € [3,4])
((pos_object, hold), t € [4,5])

((pos_object, grasp), t € [5,6])

!

Lin and Baras, 2019 IEEE Systems Conference Copyright © John S. Baras 2020 35



Safety Monitor Synthesis

. . _ Hybrid Automaton Manipulator Model
* Desired execution sequence for grasping

an ObJECt g > threshold § < threshold
(pos_init, hold) = (pos_init, move) > /\
(pos_object, move) = (pos_object, | | Groper o =los
hOId) 9 (pOS_ObjeCt, grasp) ¢ < threshold Gripper_empty
Move Hold Grasp
- ¢ > thresheld ¢ < threshold
» Execution sequence detected by model w
mon itor: q > threshold g < threshold _
Ha T TAT && + < threshd ¢ =threshold
(pos_init; hold) = (pos_init, grasp) 2 Gipperemeny | 88 st ca > threshols
Error detected (Gripper_efnpty " 1PPI-<TEY &&
|Gripper_empty
ipper_Cmd = open
&&
1Gripper_empty

Pos_Init

Release

q < threshold
&8
Gripper_cmd = open

/ q > threshold
&&

lGripper_empty

(1) Finite number of states

(2) Each state has continuous dynamics
(3) The transition of the hybrid automaton
[LTL3 specs to Monitor, Bauer 2007] Is determined by the sensor inputs

Lin and Baras, 2019 IEEE Systems Conference Copyright © John S. Baras 2020
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Synthesized Monitor Automaton

¢ Safety specification:
The manipulator should always stay stationary while grasping, until the
object is grasped firmly (Force sensor reading greater than 1N):

D, = D(grasp - (v = O)) U (Force > 1))

Neutral state

e Monitor Automaton: (Force > 1)V
@ Bad state

qp ® Good state
Force > 1)
(grasp ) A <1) (grasp) A
(v>0) A e (v ==0) A
(Force < 1) (Force < 1)

(v>0) A
(Force < 1)

true

Lin and Baras, 2019 IEEE Systems Conference Copyright © John S. Baras 2020
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The .
Institute for

Systems Signal Temporal Logic (STL)

> ¢1 = Fi35(2 < x < 3) holds
and [;J‘-f’l (0] — 0.5]

> {f}z = G[z‘ﬁ]([} T X< 6) holds
and [ p (x,0) = 0.01]

> &3 = Gpg(l < x <2) does not

hold and [ %(x.0) = —1

Copyright © John S. Baras 2020 39



95rJ,

.. Event-triggered Feedback Control s

Sys ems

“es o Laws for Temporal Logics %g@

» For w(t) € W, consider the nonlinear system

x =f(x)+g(x)u+ w(t) (1)

» Consider the STL fragment

Y o= T |p|-p| 1Ay (2a)

¢ = Gpp | Fan? | Fla 0 G ¥ (2b)

¢ e /\ ok with b < a1 | (51 (2¢)
k=1

where oy 1= Fie, .1 (¢k N sj:*’;Hl) for all k € {1,...K — 1} and
Ok = Fiey,di] VK-
Problem

Given the system (1) and a formula ¢ as in (2b), derive an
event-triggered control law & which ensures 0 < r < p?(x,0).

Copyright © John S. Baras 2020 40



o Simulations — Safe/Robust
ys ems _
Collaboration

Research

Simulations

e vi: Eventually within [0.50] go to Al
with 1 =~ 45° and stay close to v3 100
Eventually within [50, 100] go to A4, g R * @
with #1 ~ 45° and stay close to R2 :___"m

e v»: Eventually within [0.50] go to A2 - &
with fy =~ 45° iz -
Stay close to R1 and R3 and keep so—— (&) £
By = 450 ,

e v3: Eventually within [0,50] go to A3 120 I S T T

with 3 ~ 45°
Stay close to R3 and keep 3 ~ 45°

¢ = Foso) (([lp1 — AL|| < €) A([lp2 — A2|| <€) A ([lps — A3|| < €)A
(|62 — 45° < €) A (|65 — 45°| < €) A (|05 — 45°| < €)

(lp1 — psll < €))
AFis0,100] - - -

Copyright © John S. Baras 2020 41



= Simulations — Safe/Robust
Collaboration

Systems

Research

LK - : :
A iz
b} \
Fil|
i T

I
an
20
1]

41

Sl
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2 ]

LM

Robust semantics

—2()
—i)
fii)

Ir:'_'f':'r.:l:f] }

— RO

100} ¢

— 1200}

B
- 100K
Y

I'.._-'_'[f i 142t

=l )+ o mag

o 10 15 20 25 300 35 40 45 o 55 bl Ga 7 v5 80

Time (s)

» [he task ¢ is robustly satisfied with r := 0.5

Copyright © John S. Baras 2020 42



o Simulations — Safe/Robust
ystems _
Collaboration

Research

/
200 "W i
W —1—=20 30 a0 30 @ 70 =0
Time (s)
L 200t
Y \
| T T, . L
£
—200)L—L - . =
00, 10 20 30 40 50 60 70 20
Time (s)

200 —uj|
A i |
= My vl

e g |
5 e T o (s
R e | B~ e
_|" I ——— T
200015 20 30 40 50 6 70 &0

Time ()
» [he experiment was implemented with 100 Hz frequency and

a total of 7725 samples.

» Only 185 triggerings, which corresponds to a reduction in
communication and computation by 97.6% compared to
time-triggered control.

Copyright © John S. Baras 2020 43



Composable Formal Models for
Safety in Autonomous Systems:
Safe Robot Navigation Under Temporal Constraints

W8T
e\uﬁ T;-r
& -

%, \_{Q Mavridis and Baras, 2018-2020
TRy LN

Copyright © John S. Baras 2020 a4



Motivation - Robot Navigation Requirements

[ S

' |
Robot Navigation Requires _\\ ‘_ o
—J | r2\ ‘

. Temporal Constraints:
Navigation in Prescribed Time

. Safety: . = _J

Collision Avoidance

. Complex Planning Objectives:
Composition of Point-to-Point Planning Tasks

. Real-Time Computation:
Avoid Complex Integer-Programming Optimization

. High- & Low- Level Planning:
Simultaneously Tackle Motion Planning and Control of the Robot

- Robustness & Adaptability

Copyright © John S. Baras 2020
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Math. Formalism: MITL Specifications to Control Problems

Navigation Within Given Time Interval
* MITL expression

Navigating from z(0) to a neighborhood B(x,,r,) of W within a given time
interval J = [0, 7,
zo = Qap
st P=Pa,r) €FP
J =10, Tp]
o 2 x(0) € W,

which states that ||z(t) — z,|| < rp for some ¢ € [0, 7).

e Control Problem

Assuming single integrator robot kinematics,
T=u

) u’  Reg x W —=R"

determine =

such that W is forward invariant and

||z(t) — zp|| <rp, VE=T,.

Mavridis, Vrohidis, Baras, Kyriakopoulos, 2019 IEEE CDC

Obstacle Avoidance
* MITL expression

Avoiding a neighborhood B(z,,7,) of W throughout a given time interval
J =10, 7]

xg = Or—p,
st P=DPayr,) €P
J =10,7)
v 2 2(0) e WAN{ge W |qg—ax| <7}

which states that ||z(t) — z,|| > r, for all £ € [0, 7,].

e Control Problem

Assuming single integrator robot kinematics,
T=u

and for any obstacle
Oi2{geW:|lg—pil| <ri}, ieJ

and initial configuration xg € F;, = W\ O;, determine a time-varying controller

u:Rzoxfﬂ%Rn

such that the free space F; is forward invariant.

x = yi(x1)

X2

702 (V5i(x) + g, (2) (& — wa) )
Bix)=inf{llg—pil* :qe F(x)}. i€ g

Copyright © John S. Baras 2020
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Key Idea - Adaptive Controllers for Composable MITL Tasks

/N

X0 =Qsp
St. P=DPxpr,) €T
J=10,7,]

\ xo = x(0) € W

avigation within time interval |

A s

4/ \-

S.I.

Collision-free navigation \

xo = Orp,
P = p(xp,rp) e?P
J = [vap}

X0 2 x(0) € W\ {g € W: lg— x|l < 1}

J

if p € P then
px)=T & Hx—po <r,

X:uﬁ(t,x)

X = uy(t,x,p) +ug(t,x)

Safe Navigation in Prescribed Time

Copyright © John S. Baras 2020
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Robot Navigation Under Spatio-Temporal (MITL)
Constraints using Time-Dependent Vector Field Control

Robot Navigation \

/O

[ \J \
O~ ﬂ O
\J N L

. LS

\ (Y~ ) /"
\\ (U

Safe Robot Navigation in Prescribed Time Interval

Guaranteed Obstacle Avoidance

-

o=

(O10,te+4,]5j0,45) BY) A

“Until time t,,, enter the sphere {x € W : ||z — z,|| < r,}, and, for time du-
ration of t, < t,, do the task f,(t,z,z.,7,) =0. After this is finished (t <t,),
enter the sphere {x € W : ||z — x| <7y} before time ¢, > t,, and, for time
duration of ty, do the task fy(t,x, x4, 1)
obstacles {x € W : ||z —p;|| <}, i€

Under Spatio-Temporal (MITL) Constraints \

Task Execution with Precedence Constraints

(=BUf0,1,1000.£,0 A7) A

= (. Meanwhile, at all times, avoid the

o)

J

-

Distance from goal

5 1—08

<o
T

n
T
-

25

Mavridis, Vrohidis, Baras, Kyriakopoulos, 2019 IEEE CDC

Using Time-Dependent Vector-Field-

Based Control
(Hybrid Automaton)

— T =t

=

Copyright © John S. Baras 2020

Online
Control with
Automatically
Created
Hybrid
Automata —
No
Optimization
Solver
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Composable and Safe Autonomy in Multiagent Systems
Hybrid, Compositional, Suboptimal, Real-time Mission Planning for UAVs

Fiaz and Baras, 2018-2020 _
Copyright © John S. Baras 2020
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Composable, Safe, Scalable Planning for Autonomous

UAV Missions:

Problem description

Mission: Any high-level assignment for UAVs

e Autonomous search and rescue and
disaster relief

* Inspection tasks in complex workspaces

Safety represented as:
* Finite time constraints
e Spatial constraints
Objective: Safe, autonomous completion of the
task
* Meet finite time constraints
* Avoid obstacles and collision with other
UAVs
Complexity of solution is important!
* Real-time solvable
* Onboard computable

Fiaz and Baras, 2020 IFAC World Congress

Search and rescue with multiple UAVs: constrained
environment, limited time to evacuate

A smart manufacturing factory: constrained and
dynamic indoor environment for safety

Copyright © John S. Baras 2020
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Method: Divide and conquer (1)

n_pos2-th z<theeshold

zMlrehold

* Represent mission as Metric(/Signal) Temporal Logic

Specification

0i = o1y (Object Location) A O 1,1(Object Location)’

AQOo,1318(Safe Location) A O—-(Obstacles) A O—q; : @
\W/
e Action!

[ ]
&&inspect™1

Represent system dynamics as a Hybrid system model ———

* Systematically decompose mission specification into sub-tasks

#2threshol d&& pos?=land

Theorem 1. Given an MITL specification ¢;, there exists
some finite M -length decomposition ¢F, k € {1,2,..., M},
| s L =M :

s.t. AM () = @i, if Spoy Tk < T, where T; is the

finite timing interval for ¢;, and Ty.s are the corresponding
finite timing intervals for ¢f, Yk € {1,2, ..., M}. =
* Represent action specifications as motion specifications &TM’ s-toshld
| ol kry-plane
Seen_pos?=l)
* Formulate optimal control problems for each sub-task
r[v I
min > Jui(t)] z-..-wm\ Mk
.U =0
s.t. xi(t+1) = .“"/(f)-llfi(_fz‘+ By (t)u(t) ="'-'=*'=-=‘"""< @ Motion!
Xity = @i s, -

Fiaz and Baras, 2020 IFAC World Congress Copyright © John S. Baras 2020




Method: Divide and conquer (2)

* Translate each sub-task specification to “convex” constraints

x(t) € My Hi = Ny

hle < a;)

1 P

BT a(t) < a; + M(1 - b))
hT'L(t) 2 O — ]\JbE b

* Solve a Mixed Integer Linear Program (MILP) for each sub-

task

* Generate sub-optimal final trajectory by composing optimal

sub-paths

=1 sq. meters

Fiaz and Baras, 2020 IFAC World Congress

v

Each colored segment represents the optimal
trajectory resulting from solving a MILP for its
respective sub-task.

The complexity is still exponential, but because of
reduction in “size” of the parent problem, this
approach is shown to be fast and scalable!

Copyright © John S. Baras 2020
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Simulation and Results

* For the specified task:
* Decomposed sub-tasks for quadrotor (q1) 7
Ga1(aa) = AN Q5 A" [mode : Take off] B‘ “ y
bqr(ac) = Qo.5C AO-0  [mode : Steer] R
Pariery = Opaat AD-0  [mode : Steer]

Pqrprry = 0OF A Q0 F"  [mode : Grasp]

= 1 5q. meters

Pqrruy) = Qa0 H1 AO-0  [mode : Steer]

Ggr(a,ayy) = OHy  [mode : Land] TABLE 1

COMPUTATION TIMES F TASKS (dgub.
* Decomposed sub-tasks for quadrotor (q2) WOLTRIDN TN L ARREERS ety

$g28p) = OB A Q5B [mode : Take off]

Task(q1l) Time (sec) Task(q2) Time (sec)

bq2Bpy = Q0,52 AO-0  [mode : Steer] Parann) 2.7 bea(BB) 2.7

bga(py = LD U(~(pos(ql)? = C)  [mode : Hover] Pq1(AC) (13033 gqawu) gg
; ) Bar(CF) = Pq2(D) :

{-“)q‘.?.{ pay = O|U.]“]G A O-0 [?HO(EC i Sfeé’f'} @ZI{FF") 3.0 qb:_zi DG) 1111

Pg2ccry = DOG A Qp1G [mode : Grasp] Pq1(FHy) 3.7 Py2(GG") 3.0

. Q"ql{!f] ”; ) 25 @rﬂ(GHz) 5.7

Pga(cHy) = Qa2 AO=0  [mode : Steer] - Pa2(Hy HY) 2.5

Doty = OHa  [mode : Land)|

Copyright © John S. Baras 2020



Application of the method so far, and prospects

A,

=1 5q. meters

Aq

[1]: Fast, composable rescue mission [2], [3]: Safe, composable mission planning
planning for UAVs using metric temporal for UAV-based inspection tasks* (ICRA/RA-L
logic (Proc. IFAC World Congress 2020) & ACC/CS-L, two papers to be submitted)

Current focus: (1) Incorporate safe learning for collaborative tasks between agents,
(2) robustness analysis to changes in environment, and
(3) enable self-monitoring and self-correction during execution.

Fiaz and Baras, 2020 IFAC World Congress Copyrighy &btk RarpEBCorporate Research, US 54
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Optimization Based task planning
with space and time tolerances

| Lin and Baras, 2018-2020 Copyright © John S. Baras 2020
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Space and Time Tolerances
in Task Planning

5

Path 1

Path 2

o Tolerances are import factors
of the plan, runtime execution
may differ from planning.

o Planned Path 2 is referred
over planned Path 1, since it
has a better space tolerance.

Lin and Baras, 2018-2020

Copyright © John S. Baras 2020 c6



Snstﬁl&?emr Space and Time Tolerances
J . .
§SR§£ES in Task Planning

« all three signals are considered
as satisfying <>[a b](X >0) fromt=0at

the same degree.

\

0 . i

/w1 | :

* For w,, the specification will be | | :
violated if we disturb x a little 01 — :
— e

. For w,, the specification will be “ /
violated if we shift the signal a littleto 0 i I i
the right i i |

1 (‘)3 1 1

0 a b

Copyright © John S. Baras 2020 .



Slmﬂfﬁemr Space and Time Tolerances
}Stegeralr}S in Task Planning

Definition (Space Robustness)

Space robustness quantifies how well a given signal s satisfies a given
formula. The robustness degree is calculated recursively according to
the guantitative semantic:

r(s, (f(s) <d),t) =d— f(st),
Sﬁ(f() d),t) = ;(.5- (f(s) < d),1),

* & & »
% 3 3

[
'\-3
Ly
<>
D
ez
‘(
—
S

max r(s,e,t
€lt+a,t+b]

Oy 510, t in  r(s, ot
5,0 t)= min r(s,p,t),
t' €[t+a,t+b]

(

r(

(s, 1),
E va,t)_max(( yP1,1),T
(s,

& T

Copyright © John S. Baras 2020 cg



Smtﬁ}fﬁemr Space and Time Tolerances
}SRegeI;gS in Task Planning

Definition (Time Robustness)

The left and right time robustness of an STL formula with respect
to a trace s at time t are defined as follows

0~ (s, f(s),t) =max(d = 0,s.t.Vt' € [t —d,t],(s,t) E@p <, (5 t) E @)

0%(s,f(s),t) =max(d = 0,s.t.Vt' € [t,t +d],(s,t) E @ &, (5t) E @)

How much can we shift a signal to the left (or right), such that the
specification is still satisfied?

Copyright © John S. Baras 2020 co



qBRSIP)

nst};}tllietor Space and Time Tolerances 5;@04

Y . . 18 /56
S} SRe%EQS in Task Planning R

max A T+i + b5 7.
u(t) time ﬁ space

Subject to x(t+1) = f(t,x(t),u(t))

umln u(t) < umax
X, E @

¢ and [ are the weighting coefficient and we
have a+pf =1

» We consider linear robot dynamics (for nonlinear
dynamics use linearization)

* The timed temporal constraint X, = ¢ can be
converted into convex and integer constraints.

Copyright © John S. Baras 2020 50



Space and Time Tolerances in Task Planning

Space and time tolerances induce space and time robustness (robustness degrees)

Robot path that maximizes space-time tolerances

under noise free environment
Space tolerance

10 T T T -
. i C
. T,‘-fpul"f!(.“"“ (f(,‘,’) < ”‘) !) - d - .f[\";f] o -
8t O
Time tolerance | t=14 A - =364
o B3 o
o 07 (s, f(s).t) = max(d > 0 s.t.Vt € :f— d.t],(s,t) E b oo ° 5
0 & (5t E ) G P 0
+ 3 —_— f . ! o o] . @
o 07 (s, f(s),1) = max(d > 0 s.t.Vt' € [t,t +d], (s,1) E S 3 S 5o
i ' ' “lo t=25
i
119 O
Optimization problem &

max  Aire. (Xi,) + Aor? e ( Xio)

X(t),u(t) b SRR
subject to X(t+1) = f(X(t),u(t))
Uppine < B(t) < Upnay
Xio F o

p1 = Ono2014A A Q1,311 B A Opaz,ag1C A ( s kD_‘Oi)

i 350

=>Transformed into MIL constraints

Signal Temporal Logic (STL) specs, transformed
to “convex” constraints or unions of such

10

Lin and Baras, 2020 IFAC World Congress Copyright © John S. Baras 2020



Istiefo Self-Monitoring and
Svs tems .
¥ *Hesoarch Self-Corrections

e Given reference inputs obtained in planning phase: U,

 \We are constantly evaluating whether the predicted
trajectory X, still satisfies the given specification and
maintains a specific tolerance degree

Kl = 1) = [ Xy(r) i), =¥ :wN =1
Aglr) =Xy(r) for 7=l

* X, Is made of the trajectory we have observed so
far X, and the resulting future trajectory with
reference input.

Copyright © John S. Baras 2020 62



QY‘P‘SIT),

The &

sg‘fé“f“eef(ﬁs Event-triggered MPC & i J
Research Pyt

o An event-triggered MPC 1s designed for runtime self-correction
o MPC will be triggered if
""s;f)ur_'e(xi;)) S H.Hfmce or Irf’f?“t‘(x‘?) < 94‘-'5'”“5-'

 MPC: solve the optimization problem with a horizon T, and
only apply the first control input

T=t4+T

min Y (X (1) = X(7))" QX () — X(7))

X(ult) L=
subject to X(7+1) = f(X(7),u(r)), 7€ [t,t +T — 1]

X(t+T)=X,(t+T) , Unpin< U(t) < Upmgy

Copyright © John S. Baras 2020 63



The -
Institute for Case Stu d |eS
Dystems

Researc

1 = Qo200 A N Cp1,311B A Qp2,aiC A (. A UH0;)

“i:]?-“,k

10 . . . . . T . T T Triggering Instances for MPC
9r 1F - — -
g
? L []B [
8 L

06 -

> 5
1. 04
3l
2L 0.2 |
-1 L
U [
0 1
0 1 2 3 4 & 6 7 8 9 10
% U 5 U 15 20 25 Ju 35 40 45

t(s)
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Space and Time Tolerances in Task Planning:
Self Monitoring and Self-Corrections

 Actual path may deviate from planning due to noise.

* An event-triggered MPC is designed for runtime self-correction.

 Given reference inputs obtained in planning phase: U,

* We are constantly evaluating whether the predicted trajectory X, still satisfies the given
specification and maintains a specific tolerance degree

' ' ' - " P
* MPC will be triggered if ~ _ (X”) < 000 or Feekang) < Qe
1 = Qo200 4 A Q21,3118 A O32,421C A (iﬂ/\___ kD_‘Oz’)
Optimization problem with a horizon T " |
- 9+ (\\\:“‘
BB, O -~ E) of = :
7=t !
Tr O /
subject to  X(r +1) = f(X(7),u(r)).7 € [t.t + T — 1] ol /
X(+T) = X,(t+T) » UminS U(E) < Umgy = 8] O \ j
4r \\\ (| :
Triggering Instances for MPC BT |:| \\"-... ~ 11:
1 M 1 2t
o8 1t O
== Desired path . .
== Path without MPC OD E 2 9 % 2 6 7 g 2 10
02 == Path with MPC
ul(s)zb
Lin and Baras, 2020 IFAC World Congress Copyright © John S. Baras 2020
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Space and Time Tolerances in Task Planning:
Self Monitoring and Self-Corrections

P2 = Qo204 A Q[32,421C' A (izlf}_ " 0-0;)

Qo

2]
9 o
= = ]
8 i )
o
7 = o = 1
| ° O
o
> 5t || o O 5]
: o
sr— O o = O
: =
t=10
2 & o O
o
1r O =
ol ] |
nm . 2 - e
D 1 2 3 4 5 @ 7 8 ] 10
b
Triggering Instances for MPC
1k =i = e -
o8-
06
5
X
04
0.2r
0r — = e
[4] 5 10 15 20 25 30 a5 40

(s}

Lin and Baras, 2020 IFAC World Congress Copyright © John S. Baras 2020
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Reinforcement learning with
complicated tasks under finite
time constraints

" Linand Baras, 2019-2020 Copyright © John S. Baras 2020
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The

S‘{‘,Sé‘““eef(l’is Task Workspace

Y Research

20

18| (d] O &)
1 O
» O O States: 20 by 20 grid

12 | O Actions: move up, down,

- | O left, or right at speed of
O O lor2

g (]

I B

1 © (s

0 2 = 6 8 10 12 14 16 18 20

Copyright © John S. Baras 2020 68



Th .
Institte or Temporal logic to automaton
Systems

¥ Research

¢ = ((~dUe) = Qg 15d) V (mald (b— Qp5101¢) A Qa) A (-obs)

\ J \ J
T T

Task 1 Task 2

The robot can accomplish the task by achieving either one of the
objectives:

(1) do not visit position d until e has been visited, then once
position e has been visited, eventually return to position d between
8 and 15 time units.

(2) do not visit position a until b has been visited, and after visiting
b, the robot has to immediately visit position ¢ between 5 and 10
time units, and eventually return to position a

Translate specification into LTL3 monitor automaton without
considering time constraints first!

69
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" Research

18

1,

h = ({—lrf,fxfﬁ) — {}[3’15]&,:} A (—ﬂf/f (b — {,\-‘[5,1[]](‘.} M {}a) A (El—uobs) 0,00 e

(e)

(12, 12) @(c;

(d) (c)

@ (313

)
(d)\(@)

=010, bs (8.7 EBD

[1] LTL3 tool: http://ItI3tools.sourceforge.net/

(1.6) &@bXe)

Copyright © John S. Baras 2020
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http://ltl3tools.sourceforge.net/

Th .
Instittefor Temporal logic to automaton
dystems

¥ Research

1. Hard to design reward functions.
2. Hard to factor time into consideration.

3. Low Training efficiency.

Copyright © John S. Baras 2020 =



The Sub-task automaton —

Slnstltute for
ystems Transition Systems
\L x:=0
Time requirement *=0" No time requirement
on visiting ¢ (0. 0) on visiting c

(4. 3) (4.3)
x=1
C
lc Ax=5rx=<10 \/
o (12, 12)
% =0
1d v (x> 15) j €
a
(13, 13)
< x=1

T

dA(x=8) A(x<=15)

Copyright © John S. Baras 2020 72



The Reinforcement Learning

[nstitute for

dystems in extended State Space

Research

Position A

A qf,: = (Q[E,H]"ﬁ]‘) A (D_'O)

time

y Becomes green states
only between 2 seconds
and 3 seconds.

State O is red for all time
due to the always
——————— - Ny ———- requirement.

/ / Extended State!

_ @
X St =S xQ/ xV?

Copyright © John S. Baras 2020 73



The Reinforcement Learning

[nstitute for

Systems in extended State Space

Research

o QF(SPMa) =1 - QFTH(ST, a") + a - [R(STT,a) + ymax QPSP a)]

Learning Reward \

rate function Estimate of
optimal future

value
e Reward function based on sub-task automaton progression:

r,: Positive reward if the next
state s’ has a better progression

o if [aE@#L and d(s) > d(s)
(smaller d value)

R@a={r, if [aEdl=1 and d(s)=o0 * r.: Negative reward if the next
state s’ is a bad state
r«=0 if [aFd#L and d(s)=4d(s) * r.: Neutral reward if the next

state s’ has the same progression
as current state s

Copyright © John S. Baras 2020 24



«qﬁijIT}.

l 1116 f :;g\ N\ q;
nstitute fo
Qvstem Case Study .
ystems Bk, 1A
Research TRy LAY
(',b = ({_lfiz/f‘fj) — {}[3?15](_.{) AY4 (_'Iﬂ.z.ff‘ (b — {}[5?1{]]{_‘.) M C‘ﬂ-) M (D_lﬂbﬁ)
20
B Yellow State (0,0) 1. Path followed by b->c->a
1o @ et
1O
A
14} O O 2. Task accomplished
A
12} O ¢
O
st () O A O
6 -9
to O Qs
2t @
start
5 | . L | SR IR N |
o 2 4 6 8 10 12 14 16 18 20

Copyright © John S. Baras 2020
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Sl\nfsémeef(ﬁs Case Study

¥ Research
L’,lb = ({_lf.fz/{fj) — Q[H,lﬁ]rj) A (_'Iﬂ.u (b — G[ﬁ,l[l]ﬂ) A {}ﬂ.) M (D_lﬂbﬁ)
20
o &) 1. Path followed by
Br = Yellow State (12,12) v e
6l Qe"owsmeuam b—>c[5,10]2a initially
i 2. ais not reachable by
12 O W! following the plan
o)
sl @ s O O 3. Now follow
1 a b>c>e—>d[8,15]
6 = =
@ O
& ‘O O 4. Task accomplished
2t @
start
0

0 2 4 6 8 10 12 14 16 18 20

Copyright © John S. Baras 2020 26
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Teaching Robots Manipulation
Tasks

Baras, Aloimonos, Fermuller, Mao, Luan, 2014-2018 Copyright © John S. Baras 2020 77



q\:,HSZIrJ,

O

I'he 2

Institute tor

Systems Example Task: Transferring @@

'? ‘/
ARy LA

= New preferences/objectives
2 Avoid bowl above it OR around it? bottle or knife?
o Adjust the objective of adapted trajectory
o Learn preferences to adapt movement in new situation

Feedback Demonstrations Movement Adaptation after learning

Copyright © John S. Baras 2020 78



ot Teaching Manipulation P
ystems i s6
Tasks: Our System RKriersy

Research

r N BN B BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN BN B BN B AR O W -l
- PR . Robot System
Task Specification — =————p :
i i
i [
|
i
|
Imitation :
Trajectory z
|
- INRALOn Tramct I
iy i o LEmSmmwes
N Updated . :
£ A \ W : £
fal 7R\ eights Nt '
- R < p- i i
ﬁ
o5 <L W 1
""“‘- “n.‘ 04 X tm) "‘"‘"M‘a: 04 D:x.m-‘" .
Movement Adaptation Rewards :
(Planning) Learning =
- O O E W W M N MR AR BN A BN AN BN BN BN BN BN BN O ER A OB O W .
Adapted :
Trajectory :

Perception

-User
Execution Feedback

Copyright © John S. Baras 2020 79



System

Research

Example: Opening @
Microwave RS

* Given sequential task with three primitives
Reaching Grasping Pulling Opening Inserting Opening

=

Subgoal:grasping location Subgoal:pulling angle Subgoal:inserting angle

* Motion planning
— Subgoals generation and selection
— Motion planning for each primitive action

Copyright © John S. Baras 2020
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q\:,RSZIrJ,

The

Slnstitu[c for
ysteims Approach

Task Specification

World =" l‘ """""""""""""""

I
I I
Model : Subgoals Parameters :
: Generation !
I 1
E Subgoals l T Update :
I
| |
. | |
Perception | Spatio-temporal Graph Subgoals Learning | |
I 1
: | i :
Environment | Graph Replanning !
Constraints | :
—»| Sequential Motion |
— > Planning :
Embodiment :____________________ _______________________ ;
Constraints Trajectories
Robot Failure/Success
Execution

Block diagram of dynamic motion planning for sequential task with
subgoals learning

Copyright © John S. Baras 2020 81
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Q
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Recoghnition By

sodnee  Attention, Object Detection,
ystem

Research

* Large demands of robots automation

* Fundamental task: object detection &
recognition

Copyright © John S. Baras 2020 83



The: .
Institute tor

Systems Microwave Operation

The robot visually understands user
Instructions
(Heat a bowl in the microwave)

Copyright © John S. Baras 2020
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systems Al and ML — our Approach

Research

RY\ P>

Applications in Human-Robot Collaboration
Learning by demonstration with spatio-temporal constraints

Cost-oriented obstacle avoidance

Learned Task _
Human-Oriented

Obstacle avoidance

P
' Robot System
Task Specification —:b s
H -
- 54
( Movement Imitation
'

Imitation
Trajectory

Updated
Weights
b et

/

Movement Adaptatisin Rewards

Demonstrations

Adapted
Trajectory,

(Planning) Leaming Self-Assessment:
orrtl EEEr] EEEEEERRRT SEEPE «| Ask Feedback from User

/V

Percepion | PRIttt »
=
Robot User
Execution Feedback Baras et. al., Co-active learning to adapt Humanoid Movement for manipulation

Baras, Aloimonos, Fermuller, Mao, Luan, 2014-2018 Copyright © John S. Baras 2020 85



Swarms and Collectives

* Learning coordination laws of biological and man-made swarms from observed

trajectories

* Employ port-Hamiltonian formalism because it links concretely with

Al and ML can help in all
steps of the work flow:

Mavridis, Tirumalai, Baras, 2020 IEEE CDC; DARPA Reports 2019-2020

Model generation
Sparse learning
Symmetry discovery
Structure preserving
model reduction
Discovering and
simplifying collaboration
and communication laws
in swarms

®

Model generation

Initial untrained
model

Trained model

maE
o ‘.‘ Ve Il
Em

- Sparse learning @

R
Wmseries Wl
WA

I —|

[ (udg. 0l
— 7 n

mathematical physics methods used (symmetries, invariants, Noether’s
theorems) and because it can be used to model any multi-physics system

®

Symmetry
maps

.

®

.‘3 il)
.
(L] (ud,, ik}
=) = P
Structure preserving g B
A mE-
model reduction ,/ TN A
Eom e
(O] [

Reduced model

Joint work between
UMD and PARC
Funded by DARPA DSO

Copyright © John S. Baras 2020
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Boids (Reynolds, (g

http://www.red3d.com/cwr/boids/)

Ny

(a) Boid animation of birds in complex environments
(http://nervo.tv/index.html?sect=5&proj=foxmovies); (b) ‘bubles’ of different shapes
from slow to higher velocities; (c) diverse bubbles navigating obstacles to a goal

()

Copyright © John S. Baras 2020 87


http://www.red3d.com/cwr/boids/
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Learning Swarm Coordination Laws: Status

* Build a novel mathematical and software framework to learn coordination laws, of
biological and man-made autonomous ensembles (swarms) from observed
trajectories (robust to noise and missing data).

* Learning coordination laws of dynamics,
symmetry maps, invariants, conservation laws and
reduced models from real or
simulated flock data

* Port-Hamiltonian modeling of
particle (agent) interaction for
robust representation and learn

* Methodology for homeogeneous
and heterogeneous potentials,
Boids models profiles, number of
leaders, clusters of followers

Y — ‘f; (/) —J()) o

Microscale: Port-Hamiltonian
Behavior Representation

* Learning Dynamic Leadership profiles,

leaders, clusters of followers DT 0 |
 Developed fast. Accurate algorithms L{"”“’“”V"‘(”“g'“)=”"5’*’“’“)"’“£“” J
scalable to thousands of agents Macroscale: Wave-like PDEs
* Macroscopic hydrodynamic PDE model (mean field) for learning Learning Complex
coordination laws from density evolution Flocking Coordination

Laws

Mavridis, Tirumalai, Baras, 2020 IEEE CDC; DARPA Reports 2019-2020 Copyright © John S. Baras 2020 88



Learning Interaction Dynamics from Density Evolution

* Learning Interaction Laws from Particle Trajectories

( )
dey o) *real-life data?
dt L
dvi  _ 1 Y . e
d TN Zj;éi [¢($z=$3)(vj - Uz) - vﬂ?iU(IHmJ)]
<'<‘<¥<I ol ; -f«:' 5
IR
<< >, <z ‘4‘.‘, A\A o 35 L
-« < o= NS
» L‘F :;‘A
F‘ tﬂ*:k
\ i T J

* Simulation and Reconstruction of Complex
Swarm Maneuvers in 2D and 3D in both
microscopic and macroscopic domains,
capturing

* Velocity Alignment and Spatial Cohesion

* Obstacle and Collision Avoidance

* Dynamic Leadership and Strong Wind effects

* Particle Dynamics and the Chorus-Line effect

20 Parde Trajecioeies

6 Density Evolution \

hp+ Ve (pu) =0
i (pu) + V- (pu@u) = pLy(pu) — pulyp — pLiv,u)p

Problem: Requires Solution of Partial Integro-Differential Equations

—— Finite Differences | Tridiaganal Algorithm)

Solution:

=== Higmmn Sum (G cores)
=

A8z
3 ~—

. ; Lod

Computation Time {secs)
WM e s opa

oy

Interaction function = Green’s function for

1 692 g* 2# 2" gt 2
£x — ii(i2 _ 12) n {Array Elements)
2k dx Computation Times for Nonlocal Termy
KA x(t)
Particle S i Bin Trajectories
P (LX)
ot = 00,2 ) it =Ll ) L Poim(t,x)
oA D Compute D,
1

; 3 » '
-5 ar fau}

Mavridis, Tirumalai, Baras, 2020 IEEE CDC

Learned J’ 5
i [ ] i
oo .
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Machine Learning and Artificial Intelligence:
New Foundations

Copyright © John S. Baras 2020
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Learning Vector Quantization — A Competitive-
Learning Neural Network

* Supervised Counterpart of VQ (Kohonen)
* Unsupervised Self-Organizing Map (SOM)

* Online/Stochastic Algorithm; Convergence

([Baras& LaVignal991]) under convex metric
* Interpretable, Robust, Data-Driven and Topology-Preserving
« Sparse in the sense of memory complexity, fast to train and evaluate
* Consistent Classifier
* Widely used in time series, speech analysis and biomedical applications

* Impressive robustness against adversarial attacks [SHRV2019]

. = () [6] () + M
pt =it () Vydy (X ) if e # ¢ | |

LVQ Algorithm
{ui“ = I = (1) gy (Xro1, ). i 1 = ), wumy 2LOChBSHIC ADDIOX. Algorithrm Hu—e(u)——wmﬂ

MB2020
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Learning Vector Quantization with Bregman
Divergences

* A novel dissimilarity measure in Bregman Divergences qn(x)'l

t do(x,y)
Y =o(X)

dy (z,p) = ¢ (z) — ¢ (n) — 3_/J (1) (x — ) \_qa/(y)'/ () +(Ve,x —y)

¢: strictly convex

* Euclidean Distance is a Bregman divergence
* Kullback-Leibler divergence is a Bregman divergence;
Unnormalized KL works as well

* Can handle multidimensional numerical and Boolean inputs
* Correspondence with misclassification error probabilities (Hoeffding’s inequality)

« Simplifies optimization steps in EM algorithms and improves efficiency of EM algorithms (LVQ,
Soft-Clustering)

* Convergence of LVQ with Bregman Divergences [MB2020]

* Legendre duality with exponential family of densities

o Copyright © John S. Baras 2020
[MB2020] Mavridis and Baras. 2020 IFAC World Congress
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Decision Boundary

Initial random weights

Copyright © John S. Baras 2020
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Decision Boundary (cont.)

Present a training instance / adjust the weights

Copyright © John S. Baras 2020
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Decision Boundary (cont.)

Present a training instance / adjust the weights

Copyright © John S. Baras 2020
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Decision Boundary (cont.)

Present a training instance / adjust the weights

Copyright © John S. Baras 2020
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Decision Boundary (cont.)

Present a training instance / adjust the weights

Copyright © John S. Baras 2020
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Decision Boundary (cont.)

Eventually ....

Copyright © John S. Baras 2020
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Extension to LTSVQ and Interpretation

Progressive classification Extension to Learning TSVQ
*+ Saves memory
- Increases search speed e Combine LVQ with Deterministic

Annealing -- Clustering error vs Purity
of the Cluster (Entropy)

e Step needed for full analysis of WTSVQ
and application in progressive

: - Approxiats Bayes decision Surface classification (combined compression
J and classification framework)
At gher Rasoluion Gole e LTSVQ approximates directly the

R - optimal Bayes surface with successive

3 | approximations and variable (along

clual Bayes decision Surfac 1
.2 1’\":pprcn(irn:la Bayes decision ;Urlaca the Su rface) rESOIUtlon
; * Split cells where approximation is not

very good using finer resolution data

Highest Aesolution Cefls . . . .
e Akin to a multigrid numerical

- computation of the Bayes surface

e Application to state aggregation in

Actual Bayes’ decision Surfaca
2 ﬁi——}!pploxmls Rayes decision Surlace CO nt ro |

Baras & Dey, [EEE T IT, 1999; Baras & Borkar, 2000 IEEE CDC Copyright © John S. Baras 2020 99



Multiresolution Learning Clustering

ﬁ Feedback ﬁ “
. . Symmetries . . Class
f— Multiresolution| (Nonlinear) Learning Clustering
Preprocessor Features Postprocessor

» Address hierarchical organization of signal databases, progressive classification:

* Combine a multiresolution preprocessor with a learning clustering postprocessor
* Novel: Local and Global Feedback = Recurrent CNN (RCNN)

* Resulting algorithms proved to have some “universal” qualities

* Found analogs of such algorithms in animals and humans:
* Hearing and sound classification
* Vision and identification of objects by humans

* Mathematical formulation: combined compression and classification for general signals

* “One Learning Algorithm” Hypothesis : Auditory cortex learns to see [Row et al, 1992],
Somatosensory cortex learns to see [Metin & Frost, 1989]

* Our work on this problem started in the 90’s working on multisensory ATR for the Navy!
» Parallelizable easily; Faster training; Insertion of new models easy

* Applied to compression and control (via state aggregation)

Baras & Dey, [EEE T IT, 1999; Baras & Borkar, 2000 IEEE CDC Copyright © John S. Baras 2020 100



e Knowledge Graphs and
ys tems .
Semantic Vector Spaces

Research
Need to Integrate Semantic Vector Space Models
and Knowledge Graphs (Hypergraphs) Models

@ Convert the h-hop neighborhood of each node u in G into a multi-
dimensional vector Rg(u)={(u’, w (u’))}, based on the distance of neighbor
nodes u’ from u.

e, d(u,u') < h:
0,

k otherwise.

Distance between u and u’

Previous Applications of Information Propagation:
Semi-supervised Learning [Al’ 08], Concept
Propagation [CIKM "06]

Information Propagation

Copyright © John S. Baras 2020
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Advancing Al and ML for
Autonomy: our Approach

Rigorous Mathematics for Deep Networks — Universal
Architecture emerging

Non von-Neumann computing — do not separate CPU from
Memory — Synaptic NN, in-memory processing -- HTM

Universal ML -- Integrate Deep NN and Synaptic NN

Knowledge Representation and Reasoning: Integrate Knowledge
Graphs and Semantic Vector Spaces

Progressive Learning, Knowledge Compacting

Link Machine Learning with Knowledge Representation and
Reasoning

Inspirations from neuroscience

Copyright © John S. Baras 2020 102



Composable Autonomy V&V
Proposed Novel Approach

AKA Trusted Autonomy:.

Formal models of tasks and missions combining
spatial and temporal tolerances

Composability: Requirements, Models, Tasks,
Formal Models (Timed Automata, MITL, STL,
contracts), Sensing, Control, Optimization

Self-monitoring, self-learning and self-adjustment for
correct autonomous execution of tasks

Integrate composability methods and algorithms,
with the rigorous model-based systems engineering
methodology and framework we have developed
(Baras)
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The

Institute for
Systems

Research

Integrated System Synthesis Tools -

MODEL-BASED SYSTEMS ENGINEERING
COMPONENTS -- ARCHITECTURE Bl

& Environments missing

Iterate to Find a Feasible Solution / Change as needed

Model - based
UML - SysML - GME - eMFLON
Rapsody
UPPAAL
Artist Tools

Change structure/behavior model as needed

MATLAB, MAPLE
Modelica / Dymola

v

Define
Requirements
Effectiveness

Measures

\ 4

Assess

v

v
Available j—’
Information

Create
Behavior
Model

DOORS, etc

CONSOL-OPTCAD

CPLEX, ILOG SOLVER,

SIEMENS, PLM, NX, TEAM CENTER

Create
Structure
Model

Integrated Multiple

Views is Hard !

Map behavior Specifications Create
®  onto structure _@—’ Perform R Sequential
Allocate TradeOff ' build &
Requirements Analysis Test Plan

Model - Based
Information - Centric
Abstractions

derivative
requirements

metrics
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A Rigorous Framework for
Model-based Systems Engineering

The Challenge & Need:
Develop scalable holistic methods, models and tools for
enterprise level system engineering

Multi-domain Model Integration System Modeling Transformations
via System Architecture Model (SysML)

¢ Model Object

{{{ “ [B) Model Dependency

‘q \ My \\9
%{\

\SysML

@\J

e - - Doma M
R R 10T I-f

BENEFITS

« Broader Exploration
of the design space

* Modularity, re-use

* Increased flexibility,
adaptability, agility

* Engineering tools
allowing conceptual
design, leading to full
product models and
easy modifications

" Domane Automated
l\ Q_/\"’ validation/verification
4 System odel ‘ APPLICATIONS
i : * Avionics
“ Master System Model” * Automotive
Update System * Robotics
Model Tradeoff parameters * Smart Buildings
ILOG SOLVER, ADD & INTEGRATE ~————|-. PowerGrid

Multiple domain modeling tools
Tradeoff Tools (MCO & CP)

» Validation / Verification Tools
 Databases and Libraries of annotated

CPLEX, CONSOL-
OPTCAD

DB of system
components
and models

N—

component models from all disciplines

Copyright © John S. Baras 2020

¢ Health care
e Telecomm and WSN
* Smart PDAs

* Smart Manufacturing
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Requirements Engineering

How to represent requirements?

 Automata, Timed-Automata, Timed Petri-Nets

* Dependence-Influence graphs for traceability

e Set-valued systems, reachability, ... for the continuous parts
How to automatically allocate requirements to components?
How to automatically check requirements?

* Approach: Integrate contract-based design, model-checking,
automatic theorem proving

How to integrate automatic and experimental verification?

How to do V&V at various granularities and progressively as
the design proceeds — not at the end?

The front-end challenge: Make it easy to the broad
engineering user?

Copyright © John S. Baras 2020 106



MBSE and the need for 9

Institurte for
Systems

Contract Based Design i

The state-of-the-art Model Based Systems
Engineering (MBSE) framework allows multi-
domain model integration via SysML, trade-off
analysis and verification/validation tools in for the
development of complex systems.

However, the current iteration of SysML does not
permit the formalization of requirements which can
then be tied together to model driven engineering
to enable Correct-by-Construction designs.

On the other hand, compositional approaches such
as contract based design offer a comprehensive
framework for early requirement validation with
tight safety, reliability and performance guarantees
and for scalable, system-level design space
exploration under a set of heterogenous
constraints.

Copyright © John S. Baras 2020

The Challenge & Need: BENEFITS

Develop scalable holistic methods, models and tools for + Broader Exploration

enterprise level system engineeting of the design space
Multi-domain Model Integration System Modeling ‘Transformations * Modularity, re-use

via System Architecture Model (SysML) « Increased flexibility,

adaptability, agility
+ Engineering tools
allowing conceptual
design, leading to full
product models and
easy modifications
« Automated

{ )
| .
3 __/\ ¢ validation/verification
P B
= g
» ' Master System Model” \
Update System
Model /Tradeoff parameters
R ADD & INTEGRATE
CPLEX, CONSOL- Multiple domain modeling tools
L < Tradeoff Tools (MCO & CP) CIEpoRRE S
and models

* Avionics

+ Automotive

* Robotics

* Smart Buildings

* Power Grid

* Health care

* Telecomm and WSN

APPLICATIONS
+ Validation / Verification Tools

+ Databases and Libraries of annotated * Smart PDAs
component models from all disciplines * Smart Manufacturing
Copyright © John S. Baras 2013
Conventional V&V
techniques do nat
scale to highly
complex or adaptable
Conventional methodologies can lead to i v

orincorrect
long re-design cycles, costoverruns,
unaceeptable delays

B March 26, 2012

BMW Recalling 1.3 Million Cars T m
; n Cars To
Fix Eleetrical F%ah:', Design process

system and largely
ignores

complexity —
undesired and
multi-mode
interactions and
emergent system
behaviors

Need more support for scalable design space exploration, early detection of requirement
inconsistencies, more scalable verification and validation methods

[Nuzzo and ASV, “Let’s Get Physical: Computer Science Meets Systems”, FPS'14]
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wduieor - Contracts for Learning-Enabled @,

Syseins
Systems "
* Enhance system with mathematically rigorous learning
components, including ML and Al components
 Add assurance on these learning components

 A/G contracts encode the behavior of individual
components

* Designer can model the behavior of the learning-
enabled components working side-by-side with other
components

* Incorporate assurance states, risk states

e Strong connections with risk-based stochastic control
and prediction with the addition of temporal
constraints.

* Leads to efficient use of model-checking systems

Copyright © John S. Baras 2020 108



Dexterous Robotic Hand Grasping
with Slippage Detection, Learning
and Self-correction

Zhenyu Lin, Charles Meehan, John Baras

Copyright © John S. Baras 2020 109



Haptic-Vision Dataset

Haptic-Vision Dataset: Fingerail
. . Hold Ski "
e Collected synchronized haptic and ff,°P,a‘;e, '“\  Hydohoousi

vision data for 80 experiments

Pressure Sensor
=1 i WZOphone)
. . Elastomeric —,
e Haptic data is sampled at 100HZ Ski /\_\/
with five modalities \ |

.- . . . ermistor \
¢ Vision data with resolution 1080P fhermst \ Rigid Core

Incompressible  Impedance Sensing

and 30fps framerate CodichaFig  Electrodes
e Slippage moment t* is labeled for
each experiment

(@) BioTac S Sensory | Symbol | Range | Resolution |  Frequency
Modality Response
Impedance E, 0-33vV | 32mV 0-100 Hz
Fluid Pressure | Ppc | 0-100kPa | 365Pa | 0-1040Hz
Microvibration | Py | +-0.76kPa | 0.37Pa | 10-1040Hz
Temperature | Tpe 0-75C 01C 0-226Hz
Thermal Flux | Ty 0-1C/s | 0.001Cls | 045-226Hz

Haptic data sensory modality

Sample vision data from experiment

Lin, Meehan, Baras, 2019 DGR Symp., JRR, IEEE JRA, INCOSE SE  COPYright © John S. Baras 2020 o




Median Flow Tracker: Slippage Detection
Using Tactile Sensor

» Median flow tracker is used to detect the time t* —
that slippage occurs for each experiment. Detected Frame #: 8
« Since there is only one possible direction of

movement, the tracker has a high accuracy. 1]
 Analyze the statistics of the haptic data around t* |
* Found peak correlation around moment of Ry
slippage Z T
 Fluid pressure (PDC) used to estimate P LV

the force applied on the object

« Relationship between PDC and force
Is piece-wise linear (Coulomb model)

 Force estimation Is very accurate
within [0,1]N range

 During self-correction, the robot will
apply suitable force based on weight
estimation of grasped object

26

(et L L L
0 50 100 150 200 250 300 350 400 450
POC

Lin, Meehan, Baras, 2019 DGR Symp., IJRR, IEEE JRA, INCOSE SE COPYright © John S. Baras 2020 11



Slippage Detection and Self-
Correction Framework

Controller | u(! Shadow)
(PID) Hand J

Desired
Force

Estimate

Detection Module

- e
.. Trainin
Vision Data 8 XH(t)‘ Correlation Xg(t) Tactile
Sensor 4t J Calculation Sensors
aroun L
v Pdc(t
Current l 5(t) (t

Force
Estimate J

Lin, Meehan, Baras, 2019 DGR Symp., IJRR, IEEE JRA, INCOSE SE  COPY"ight © John S. Baras 2020 112



Object Classification

* \We observe that the vibration sensor
(PAC) data is very different between
soft container and rigid container

« |If an object is classified as soft, we
will set another empirical threshold
for the force applied on the object

e Performance based on

|tdetect - t*l
detection time error: € =

ttotal

TABLE I: Comparison slippage prediction using different
methods and window size

Method Used Window Size  Average Error

Corr-MAD-single 20 141 (b) Rigid Container
Cor-MAD-ALL 20 6.67
Corr-MAD-single 50 8.23 ..
Com MADALL % 5 i * Our LSTM approach similar to (Wyk, Falco, 2018)
Corr-MAD-singke 100 775 * Our approach has higher accuracy
Com-MAD-ALL 100 Xl
DNN-LSTM 100 15.57

Lin, Meehan, Baras, 2019 DGR Symp., URR, IEEE JRA, INCOSE SE  COPYright © John S. Baras 2020 113



MBSE Framework for Dexterous Robotic Hand

e Created SysML architecture diagrams to model the structure and behavior of
the robotic system (included UR10 arm, Shadowhand, BioTac sensor)

* Implemented Lua, MATLAB, and Python scripts to control the CoppeliaSim
simulation. Vortex Studio used for stable grasping.

e Connected Cameo Systems Modeler (SysML) to the robotic simulation.
Essentially creating a “Digital Twin” Framework.

* Designed and evaluated a slippage detection and correction algorithm for
the experiments in the lab and simulation.

* Validated stakeholder requirements, verified the simulation requirements.

 Many behavior diagrams were created, including those modeling the
slippage detection and correction problem in simulation.

* Main goal was to start simulation from Cameo Systems Modeler with certain
input parameters, conduct simulation in a robotic simulator (CoppeliaSim),
and receive the output metrics back into Cameo Systems Modeler once the
simulation has ended.

* Used framework to optimize the rotational velocity of the finger and thumb
joints used during the correction stage.

Meehan, Baras, INCOSE SE, IEEE SYS Copyright © John S. Baras 2020 114



Robotic System Context-Level BDD: System

wblocks robetic System
Robotic Syst
robotic Arm], N el |
ablocks
Robotic Arm
SOELTEECIOr, o Ro
«<blocke 5 ‘
End-Effector = robot Operating System
values r_
EE_Mass : Real
1 «bhcks ”
Bkt sensor| ! Robot Operating System Robotic Engineer
chs «bcks g i ntrol System computer
Actualor Sen - Rebot Operating System Y mp!
mor | : Arm Controlier ablocks ablocks
: Control hterface Wodule ntrol
w Dexterous Hand | am Link|1.* : Hand Contraller S co::::ht
ablockn «blocky ._proparties RAM - Real
Shadow Dexterous Hand Arm Link : Robetic Engineer Storage : Real
R o control Elemert 0S :Real ——
Completed Grasp Test : Completed Grasp AL_Mass : Real Lr «blocks
= AL_Length: Real pack: topics Control Element
paim - Paim ‘ e P
forearm: Forearm Package A Ethernet Cabl
litte Finger : Little Finger i §
ring Finger : Ring Finger «blocks
middle Finger : Middle Finger uR1o
first Finger : First Finger - «blockn ablocka hand Controller
m"'mtb ‘;numb ot Joml;;'w nodes Arm Controller Hand Controller
wriet: Wrist ; ¥ = . A
finks : Links £h0ck> abbcts
Shadow Hand Work Space
Sy vahies R control Interface Module Efheme Cable
graspComphete : Real Hand Arm URDF i
—- «blocks Ecnntml Interface Nodule ¢
Control Interface Module «blockn
CoppeliaSim
valiss
Physics_Engne
—_— e pythen | MATLAS Friction_Coe’f
«blocks «blocky opecations |
;am::l; «!::clzks Python Script MATLAB s?n.nnMweTo.{:mPosmons()
oparasons oparabons sysCai_threadmain()
graspFunctionForce() tesiGraspfuncForce( s ) sim.wait()
sim.simxStart() system() sim.geiObjectHandle()
cempleteOrasp() strings() Sim.get0bjeciMatrix()
printl str2double() sim.resdForceSsenaor()
sim.simFinish() save() sim geiSimulationTime()
sim.smxStart() had() simaddForceAndTorque(y
Sim.simxStartSimulation(} Error() sysCal_actuation()
2im.emxGetObjectHandia(} sim.setJontTargetVelocity ()
sim.simxCalScriptFunction() sim getlentPosition()
finalFosf) simgelintegerSignal()
abs()
append(}
=im simxSeintegerSignal()
sizep()
sim.simxStopSimulation()
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Shadow Hand BDD
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“Digital Twin” (Simulation) Demo

= Selected objects. (1]

# Simulafion fims: 00.00:00 55 {dt=50 0 ms) g

| -5 cnllecfe: man-1 :ll)ms).-nmmrig‘ﬁxrends-, 1{&ms}
- Ui C ms) : :

Cameral

H 117
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“Digital Twin” (Simulation) Demo: Shadow Hand
Grasping Simulation with Force and No Correction

-0.4 3 z -

Fsgr;;eoddedtompend IS ’u“-"-:‘ r 17
2 opr , A 1 [/ /
simulation stopping... e/ A \/\./'—/w: < .{
Simulation stoppad. L ooN
Simulation started. =

Meehan, Baras, INCOSE SE, IEEE SYS Copyright © John S. Baras 2020 118



“Digital Twin” (Simulation) Demo: Simulation of
Slippage Detection and Correction Problem

|ﬁ}i|‘§’ S @ 'LEO_: |§ °§° @“ :i‘.'q 5 0 Plvonex  ~ | Acuete (defar ~ |a=seams ppr=~ I [l B & & ﬁ 4 & Q}l =

| new stene. arcgraspshadowdemocontrofier

P 5 Selecied chjecis:
®|Simulation time:

; Foros added to cup end
155.5 3 ik
i smulation stopping... " ¢ LS
| Simulation stopped.
| Simularion started.

v -

]

Meehan, Baras, INCOSE SE, IEEE SYS Copyright © John S. Baras 2020 119



Demo: Grasping without
and with self-correction

Without correction algorithm:

Slippage occurs when adding
welght to the cup

Lin, Meehan, Baras, 2019 DGR Symp., URR, IEEE JRA, INCOSE SE  COPYright © John S. Baras 2020



Multi-Agent Autonomous Systems:
Multiple Coevolving Multigraphs

Multiple Interacting Graphs

Real-life problems: Dynamic,
time varying graphs,

Nodes: agents, individuals, groups
Directed graphs
Links: ties, relationships

Weights on links : value (strength,
significance) of tie

Weights on nodes : importance of
node (agent)

Information

network .-~

network

relations, weights, policies s

We introduced these models -- 2010

Used them recently to model Net-CPS, Net-CHPS

Investigated effects of topology: proved Small World Graphs

speed up consensus (probabilistic argument)

Copyright © John S. Baras 2020
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Multi-Agent Autonomous Systems:
Multiple Coevolving Multigraphs

Investigated coalition formation via constrained coalitional games
Showed expander graphs are “best” topologies for communication

Showed effects of communication topology on convergence speed and
robustness of MA algorithms

Proved the stability of car platooning (long standing problem)

Developed and analyzed extremely simple distributed algorithms achieving
system optimality — with no communication or with just one bit
communication -- currently studying ways to speed up

Showed emergence of motifs in communication graph for simpler controls

Proved a simple version of Arrow’s 1974 conjecture: Trust is a catalyst for
collaboration

Investigated dynamics of trust and mistrust

Investigated dynamics of various types of signed networks
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Multi-Agent Autonomous Systems:
Multiple Coevolving Multigraphs

Developed novel partially ordered semiring model for indirect trust dynamics
Showed that dynamic trust mechanisms are essential for achieving consensus
in the presence of adversaries (applications to various distributed algorithms)
Showed the need for noncommutative probability models (von Neumann like)
for MA systems

Recently initiated investigation of joint optimization of information and control
— led to discovery of new values of information (non Shannon)

Showed the interactions between information and control lead to constrained
event algebras that can only be modeled by “Independence Friendly Logic”,
which has game theoretic semantics

Investigation of the effects of resource constraints, stress, etc. on human
decision making using these noncommutative probability models
Investigation of the emergence of noncommutative probability models in
asynchronous autonomous networked systems, and human machine teams —
connections to neuropsychology and human behavior studies

Investigation of connections to human cognition, decision making, risk
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Outreach and Collaborations:
On-Going Applications
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Highway on-ramp merging control with V2X
information

* Focus on the problem of highway on ramp merging
with cooperation and communication between
vehicles and infrastructure

* Key Issues:

* Overflow effect caused by merge delay in which outer
lanes of highway becomes congested

* Delay caused in both merging traffic and highway
traffic

* Unfair allocation of merging rights (Varying priorities)

* Fairness and robustness of algorithms under changing
traffic densities

* Sensor suite:

* Radar sensors, lidar sensors, odometry sensors and speed
traps

* V2| communication and V2V communication

125
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Integration of Ramp Metering Control and Route
Guidance Strategy for Beltway Networks Using
Model Predictive Control

TIME TO

=1 !
1-88.VIA'355
v ! DNTHN VIAR290

. . . ) ) Cowri ht © John S. Baras 2020
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Car Overtake Problem

* Problem: Generation of trajectories and —

control laws for the autonomous ego vehicle A - """" ey
to safely overtake a human-driven vehicle u" -
travelling in the same direction while avoiding _._... et o
the oncoming traffic in the adjacent lane o T

* Objective: Stochastic control formulation of n - n

the problem employing metric temporal logic
constraints in order to satisfy the safety
guarantees

e Outcome: A robust and safe algorithm which
will be implemented and tested in a
simulation environment

! i/

[y .
Fog ﬁ Ego - Vehicle
[ /

. . . . _ Copyright © John S. Baras 2020
Faizan Tarig and John Baras, with Maryland Transportation Institute and General Motors 127



Nilesh Suriyarachchi and John Baras, with STEER Copyright © John S. Baras 2020

Autonomous Vehicle Parking Control

Key Research Aspects

Velocity control

* Dynamic velocity adjustment for obstacles
* Velocity adjustment along curves

Obstacle Avoidance with Neural Nets

Reverse Parking Logic Control

* Importance of States

* Transition Logic accuracy
* Accuracy and repeatability of
algorithm

Parking Spot Detection
* Minimal cost/complexity
solution

* Robustness for dynamic environments
* Noise rejection

@ STEER 128



Autonomous Indoor Navigation using Visual SLAM

* GOAL: To perform robust, cost efficient autonomous navigation on off the shelf robotic
platforms using Visual SLAM

* Key Research Aspects

* Cloud based computing

* Reduces computation load in the robot 35" ,
. . M ESo B
* Can use low cost simple robotic platforms Cloud BB
« Leverages 5G and advanced networking capabilities G T B
* Multiple sensor fusion
* Critical for dealing with multiple input data streams L~
L ]
* Importance of time synchronization (Real-time applications)
* Stabilized data frame output yas ROS

Robot Operating System

e Visual feature-based localization

* Graph SLAM optimization
* Hardware and software upgrades for robustness
* Multiple scenario testing

NOKIA Bell Labs

: 129
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Composable Autonomy and V&V for
Distributed Heterogenous Sensor Networks

* Objective:
* Develop a novel methodology for the modeling, design and V&V
of distributed ISR systems with heterogeneous sensors.
* Methodology will be implemented into a prototype Model Based
Systems Engineering (MBSE) framework for these systems.
* Such arigorous MBSE methodology and framework for
distributed sensor ISR systems does not exist today.

* Tasks Description:

e Task 1: Select a small set of sensor types for the Wireless Sensor
Network (WSN) model. Develop simple performance models for
the performance of each sensor type in relation to the ISR use case.

e Task 2: Select a small number of sensors and a network
architecture for modeling an initial distributed sensor ISR system.
Specify the performance metrics and requirements.

e Task 3: Apply the new MBSE methodology to the resulting
networked system. Ensure that a simple executable simulation
works. Model specifications using metrics, constraints, contracts
and timed automata as needed. Keep the overall system simple as
time is limited.

c@®

@
PN

»E

L@
®

1

wmow=mwn

RLS

(a) LIDAR (b) IRST (c) RADAR

(i) UAV (i) ugv

LOCKHEED MARTIN _;ﬁ
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Other Collaborations

Marilyn Duong — NRL Internship on human robot
collaboration

Charles Meehan — NRL Internship on autonomous sensor
networks

John Baras — with Lynn Ewart and Scott Sideleau of USN
NUWC Newport RIl, on MBSE for hybrid autonomous UAS
teams mission planning and operation

David Hartman, Erfaun Noorari, John Baras with Brian Sadler
of ARL on collaborative autonomous teams and RL

Christos Mavridis and John Baras — with Alex Duda and Neta
Ezer of Northrop Grumman on LVQ, SOM, and application to
autonomous acoustic sensor networks
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Future Directions

Develop further the framework for synthesis of autonomous systems with safety
Develop further composability theory and methods (divide and conquer)
Self-monitoring, Self-adjustment, for Correctness

Incorporate advanced learning, safe learning, sensor fusion

New “Value of Information” metrics and Control-Information duality
Incorporate time and complexity metrics

Investigate further new logics for autonomous teams (machine and human-
machine)

Risk sensitive decision making, Prospect theory, autonomy, RL

Reverse engineer flocks and biological collectives

Further demonstrations in UAV, robotic, autonomous ground vehicle examples
Unmanned ship and underwater vehicle applications

Further demonstrations in UAV, robotic, autonomous ground vehicle examples
Unmanned ship and underwater vehicle applications

Link to advanced simulators and on-line data input

Copyright © John S. Baras 2020



Thank you!

baras@umd.edu
301-405-6606
https://johnbaras.com/

Questions?

Copyright © John S. Baras 2020
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