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Motivation

• Safety

– UAVs in commercial 

airspace

– Autonomous vehicles & 

human-driven cars

• Human involvement

– Safety is critical and 

fundamental

• Physical limitation

– To avoid states that lead 

to unavoidable collision 

3
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Motivation

• Synthesize plan from task 

specifications

– Agriculture monitor

– Security and surveillance

– Search and rescue

– Disaster relief / Emergency

communications

• Perform task in an optimal 

manner  with given time 

constraints and other 

specs 

4
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Motivation: Human-Robot 

Collaboration and Safety
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◼ Teach through demonstrations
❑ Easy training, hard to generalize to new constraints

◼ Program planning techniques
❑ Generalize to constraints, manually design objectives

Motivation: Learning Tasks,    

Changing Environments
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Motivation: Collaborative 

Autonomy and Trust
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Motivation: Future Networks Automation ---

5G, SDN, NFV, MEC, IoT, NaaS,….

8
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Key Challenges Addressed

• Safe behaviors – can they be learned?

– UAVs in commercial airspace

– Autonomous vehicles & human-driven cars

• Human-machine collaboration – off line and on-

line learning – is it safe?

– Safety is critical and fundamental

• Physical limitations

– To avoid states that lead to unavoidable faults, 

collisions, wrong behavior – Prediction? How fast? 

How accurate? 

9
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Assured Autonomy : Spatial and 
Temporal Tolerances

– Artificial potential based method

– Reachable set based verification

– Control synthesis using optimization

– Mixed integer optimization based method

– Timed automata based method

10Tan, Xi, Zhou, Maity, Baras, several papers 2015 -2019
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Fast Moving aircraft 

in 2D projection

11

Monitoring Airspace 

by UAVs
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Autonomy via 

Potential Functions
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UAS agents avoid one another.

13



Copyright © John S. Baras 2020

a 2
1 1

a a a a r a a a 2
1

, ) , )( ) ( , ( ,
N

i i i m m

i

J b f g 

− −

=

= + + −x x x v x x v x x

Gradient pushes UAS out of the way of piloted aircraft.
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Potential Functions
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Mission
Autonomous, distributed maneuvering of a vehicle group to reach and 

cover a target area

Constraints
Desired inter-vehicle distance

Obstacles avoidance

Threats (stationary or moving) avoidance

Requirement
Using only local or static information

Multiple Collaborating 

Vehicles

15
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Artificial Potentials –
Gradient-Flow Approach

Dilemma of the Deterministic gradient-flow approach
Potentials-based approach can accommodate multiple objectives and 

constraints in a distributed and computationally effective way

The system dynamics could be trapped by the local minima 

Weighted sum of potential functions:

Target (attraction) potential Jg

Neighbor (avoidance) potential Jn

Obstacle potential Jo

Potential Js due to stationary threats

Potential Jm due to moving threats
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Being Trapped by Local Minima

Different initial conditions may cause vehicles to be trapped by local minimum

17



Copyright © John S. Baras 2020

❑ Agent s can communicate with 

neighboring agents in Ns which stay 

within the interaction range Rs

❑ An agent can go at most Rm within one 
move, which defines the phase space s

❑ Gibbs potential is designed to reflect 

global objective

Modeling a Swarm as a GF

2D mission space on discrete lattice cells

Difficulties in applying classical results

❑ Non-stationary neighborhood system

❑ Time-varying and state-dependent phase space
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Animation of Sequential Gibbs 

Sampling Algorithm

Obstacle

Agents

target
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Stochastic path exploration based on MRF can lead multiple 

vehicles getting around the obstacles

Stochastic Path Planning 

Simulation

Potential function

• Target (attraction) potential Jg

• Neighbor (avoidance) potential Jn

• Obstacle potential Jo

( ) n

sn

o

so

g

sgs JJJx  ++=
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Simulation: Gathering

200 nodes on 50 by 50 grid；1= 0.05 , 2 =1,  =103

Rm=22, Rs=62； T(n)=1/(4log(400+n))

specified center Z0=(25,25) unspecified center

21
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Simulation:  Line Formation

200 nodes on 50 by 50 grid
=10 , =5

Rm=2 2

Rs=102, 62, 42

T(n)=1/(4log(400+n))

One line

Two lines

Three lines

22
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Sensor Errors and Noise –

Learning and Robustness

UAVs learn environments from sensors

Issues in practice
Cost-effective sensors are preferred

Noises introduced by sensors may affect decision process

Environment Sensors

Robot

Actions

Measurements Perception

Decision

Noise

23
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Reachability Analysis 

for the Nonlinear System

• Linearization

• Separation

– Enlarge by inputs

– Enlarge by 

linearization

error

Image courtesy of [Althoff 2010]: Safety Verification of Autonomous Vehicles for Coordinated Evasive Maneuvers

Matthias Althoff, Daniel Althoff, Dirk Wollherr and Martin Buss
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▪ We seek a control set update rule 

design for ego aircraft in a non-

collaborative setting

▪ Guarantee collision avoidance with reachable tube 

of the intruder aircraft

▪ The control constraint set should be time varying

▪ Collision avoidance at every time instance

▪ Seek a tighter control constraint set 

such that

▪ Collision free from predicted reachable set of 

intruder at all times

▪ The control set should be as large as 

possible.

▪ Variation in the control set should be small

Collision Avoidance of Two UAVs 

with Time Varying Control Tubes

25
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Path Planning with Space and 
Temporal Logic Constraints

• Problem: How to generate 
trajectory/path based on temporal 
specifications such as ordering, 
repetition, safety?

• State of the art: motion planning with 
temporal constraints without duration, 
such as Linear Temporal Logic (LTL).

• Two methods for timed temporal logics, 
such as Metric Temporal Logic(MTL): 

– An optimization based method

– A timed-automata based method

26

Task: Always visiting 

area a,b,c and stay there 

for at least 2s. Always 

avoiding obstacles
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Definition: The syntax of MTL12 (MITL13) formulas are
defined according to the following grammar rules:

𝜙 ∷= ⊤ 𝜋 ¬𝜙 𝜙 ∨ 𝜙 𝜙𝑈𝐼𝜙

where 𝐼 ⊆ 0, ∞ is an interval with end points in ℕ ∪
∞ and the end points have to be distinct . 𝜋 ∈ Π is the

atomic proposition.

More sophisticated MTL (MITL) operators can be derived
using the grammar defined above; such as: always in 𝐼1 ≡⊥
𝑈𝐼1, eventually always ◊𝐼1 □𝐼2 etc.

Metric Temporal Logic (MTL)

and Time Constrained Task

27
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min
𝑢

𝐽(𝑥 𝑡, 𝑢 , 𝑢(𝑡))

Subject to   𝑥 𝑡 + 1 = 𝑓(𝑡, 𝑥 𝑡 , 𝑢 𝑡 )

𝐱𝑡0 ⊨ φ

Remark:

The task φ may be a finite duration task within an
infinite time horizon task such as surveillance, periodic
tasks etc.

Optimization Based Method

28
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A polygon can be represented as intersections of several half-
planes.

The constraint 𝑧𝑖
𝑡 = 1 iff ℎ𝑖

𝑇𝑥 𝑡 ≤ 𝑘𝑖 is enforced by the linear
constraints:

ℎ𝑖
𝑇𝑥 𝑡 ≤ 𝑘𝑖 +𝑀(1 − 𝑧𝑖

𝑡)

ℎ𝑖
𝑇𝑥 𝑡 ≥ 𝑘𝑖 −𝑀𝑧𝑖

𝑡 + 𝜖
where 𝑀 is a very large positive number and 𝜖 is a very small
positive number, and 𝑧𝑖

𝑡 ∈ {0,1}.

Let 𝒫 =∩𝑖=1
𝑛 𝐻𝑖 be a polygon with 𝐻𝑖 = 𝑥 ℎ𝑖

𝑇𝑥 ≤ 𝑘𝑖}.

Define 𝑃𝑡
𝒫 = ∧𝑖=1

𝑛 𝑧𝑖
𝑡, then 𝑃𝑡

𝒫 = 1 iff 𝑥 𝑡 ∈ 𝒫.

From MTL Constraints to Linear 

Constraints

(1)

29
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min
𝑢,𝑧0,…,𝑧𝑁∈ 0,1 𝑝

𝐽(𝑥 𝑡, 𝑢 , 𝑢(𝑡))

Subject to 𝑥 𝑡 + 1 = 𝑓(𝑡, 𝑥 𝑡 , 𝑢 𝑡 )

𝐿 𝑥 𝑡 , 𝑧𝑡 , 𝑡 ≤ 0 ∀𝑡 ∈ 0, 𝑁

The timed temporal constraint 𝐱𝐭𝟎 ⊨ 𝝋 can been converted into

the linear and integer constraints.

Remark:

If 𝐽(⋅,⋅) 𝑓 . , . , . are linear functions of 𝑥(𝑡) and

𝑢(𝑡) , then entire problem will be a Mixed-Integer

Linear Optimization Problem.

Modification of Original Problem into MILP

30
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Results and Discussion

• Specification in MTL

• The resulting 

trajectory for the 

linearized quadrotor 

dynamics, projected in 

2D.
2D projection of the trajectory of the 

quadrotor satisfying the task.

31
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Results and Discussion

• Specification in MTL

• 3D Trajectory

– The trajectory avoids 

the obstacle region in 

time and space

32
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• Manipulation Task:  
Do not grasp until reaching the object position, grasp the object within [5,10] and avoid obstacles

Manipulation Task Planning via Model Checking

∅ = ¬ 𝑔𝑟𝑎𝑠𝑝 ∪ 𝑝𝑜𝑠_𝑜𝑏𝑗𝑒𝑐𝑡 ∧ ◊ 5,10 𝑔𝑟𝑎𝑠𝑝 ∧ (□¬𝑝𝑜𝑠_𝑜𝑏𝑠 )

Manipulator Model
(Timed automata)

MITL specifications
(Timed automata)
[Maller, 2006]

Model-Checking
Algorithm

UPPAAL

Execution sequence satisfying the MITL formula is synthesized using the UPPAAL tool

33

• MITL: 

Location States Action States

Lin and Baras, 2019 IEEE Systems Conference
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Each node is a location-action pair. 

Some transitions are not possible: (pos0, hold) → (pos1, hold) or (pos0, move) → (pos0, move)

Agent Model in UPPAAL

•  Clock constraints not shown on the figures. Assume all transitions take 1 sec.

34Lin and Baras, 2019 IEEE Systems Conference
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UPPAAL Solution: Case Study

∅ = ¬ 𝑔𝑟𝑎𝑠𝑝 ∪ 𝑝𝑜𝑠_𝑜𝑏𝑗𝑒𝑐𝑡 ∧ ◊ 5,10 𝑔𝑟𝑎𝑠𝑝 ∧ (□¬𝑝𝑜𝑠_𝑜𝑏𝑠 )

((pos_init, hold), t=0) 

((pos_init, hold), t ∈ [0,1]) 

((pos_init, move), t ∈ [1,2])

((pos_object, move), t ∈ [2,3]) 

((pos_object, hold), t ∈ [3,4]) 

((pos_object, hold), t ∈ [4,5]) 

((pos_object, grasp), t ∈ [5,6]) 

35Lin and Baras, 2019 IEEE Systems Conference
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Safety Monitor Synthesis

•  Desired execution sequence for grasping 

an object:

(pos_init, hold) → (pos_init, move) →

(pos_object, move) →(pos_object,

hold) → (pos_object, grasp)

•  Execution sequence detected by model 

monitor:

(pos_init; hold) → (pos_init, grasp) →

Error detected 

36

(1) Finite number of states

(2) Each state has continuous dynamics

(3) The transition of the hybrid automaton 

is determined by the sensor inputs

Hybrid Automaton Manipulator Model

[LTL3 specs to Monitor, Bauer 2007]

Lin and Baras, 2019 IEEE Systems Conference
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Synthesized Monitor Automaton

∅𝑚 = □ 𝑔𝑟𝑎𝑠𝑝 → 𝑣 = 0 ∪ (𝐹𝑜𝑟𝑐𝑒 > 1))

q0

q1

q⊥true

(grasp ) ∧
(v > 0) ∧
(Force < 1)

(grasp) ∧
(v ==0) ∧
(Force < 1)

(grasp) ∧
(v ==0) ∧
(Force < 1)

(Force > 1)

(Force > 1) ∨
(!grasp) 

(v > 0) ∧
(Force < 1) 

Neutral state

Bad state

Good state

● Safety specification:   
The manipulator should always stay stationary while grasping, until the  
object is grasped firmly (Force sensor reading greater than 1N):

● Monitor Automaton: 

37Lin and Baras, 2019 IEEE Systems Conference
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Signal Temporal Logic (STL)

39
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Event-triggered Feedback Control 

Laws for Temporal Logics

40
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Simulations – Safe/Robust 

Collaboration
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Simulations – Safe/Robust 

Collaboration
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Simulations – Safe/Robust 

Collaboration
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Composable Formal Models for 

Safety in Autonomous Systems: 

Safe Robot Navigation Under Temporal Constraints

44

Mavridis and Baras, 2018-2020
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Motivation – Robot Navigation Requirements

Robot Navigation Requires 

● Temporal Constraints: 
Navigation in Prescribed Time

● Safety: 
Collision Avoidance

● Complex Planning Objectives: 
Composition of  Point-to-Point Planning Tasks

● Real-Time Computation: 
Avoid Complex Integer-Programming Optimization

● High- & Low- Level Planning: 
Simultaneously Tackle Motion Planning and Control of  the Robot 

● Robustness & Adaptability

45
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Math. Formalism: MITL Specifications to Control Problems

46

Navigation Within Given Time Interval 
• MITL expression

• Control Problem

Obstacle Avoidance

• MITL expression

• Control Problem

Mavridis, Vrohidis, Baras, Kyriakopoulos, 2019 IEEE CDC
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Navigation within time interval J Collision-free navigation

Safe Navigation in Prescribed Time

Key Idea – Adaptive Controllers for Composable MITL Tasks

47
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Robot Navigation Under Spatio-Temporal (MITL) 
Constraints using Time-Dependent Vector Field Control

Robot Navigation

Using Time-Dependent Vector-Field-
Based Control

(Hybrid Automaton)

Under Spatio-Temporal (MITL) Constraints

• Safe Robot Navigation in Prescribed Time Interval

• Guaranteed Obstacle Avoidance

• Task Execution with Precedence Constraints

Online 
Control with 
Automatically 
Created 
Hybrid 
Automata –
No 
Optimization 
Solver

Mavridis, Vrohidis, Baras, Kyriakopoulos, 2019 IEEE CDC 48
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Composable and Safe Autonomy in Multiagent Systems

Hybrid, Compositional, Suboptimal, Real-time Mission Planning for UAVs

Fiaz and Baras, 2018-2020
49
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Composable, Safe, Scalable Planning for Autonomous 
UAV Missions:     Problem description

• Mission: Any high-level assignment for UAVs

• Autonomous search and rescue and 
disaster relief

• Inspection tasks in complex workspaces

• Safety represented as:

• Finite time constraints

• Spatial constraints

• Objective: Safe, autonomous completion of the 
task

• Meet finite time constraints

• Avoid obstacles and collision with other 
UAVs

• Complexity of solution is important!

• Real-time solvable

• Onboard computable

50

A smart manufacturing factory: constrained and
dynamic indoor environment for safety

Search and rescue with multiple UAVs: constrained
environment, limited time to evacuate

Fiaz and Baras, 2020 IFAC World Congress
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Method: Divide and conquer (1)

• Represent mission as Metric(/Signal) Temporal Logic 
Specification

• Represent system dynamics as a Hybrid system model

• Systematically decompose mission specification into sub-tasks

• Represent action specifications as motion specifications

• Formulate optimal control problems for each sub-task

51

Action!

Motion!

Fiaz and Baras, 2020 IFAC World Congress
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Method: Divide and conquer (2)

• Translate each sub-task specification to “convex” constraints

• Solve a Mixed Integer Linear Program (MILP) for each sub-
task

• Generate sub-optimal final trajectory by composing optimal 
sub-paths

52

Each colored segment represents the optimal
trajectory resulting from solving a MILP for its
respective sub-task.

The complexity is still exponential, but because of
reduction in “size” of the parent problem, this
approach is shown to be fast and scalable!

Fiaz and Baras, 2020 IFAC World Congress
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Simulation and Results

• For the specified task:

• Decomposed sub-tasks for quadrotor (q1)

• Decomposed sub-tasks for quadrotor (q2)

53
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Application of the method so far, and prospects

Current focus: (1) Incorporate safe learning for collaborative tasks between agents,                     
(2) robustness analysis to changes in environment, and                                                                           
(3) enable self-monitoring and self-correction during execution.

54

[1]: Fast, composable rescue mission
planning for UAVs using metric temporal
logic (Proc. IFAC World Congress 2020)

[2], [3]: Safe, composable mission planning
for UAV-based inspection tasks* (ICRA/RA-L
& ACC/CS-L, two papers to be submitted)

*Joint work with ABB Corporate Research, USFiaz and Baras, 2020 IFAC World Congress



Copyright © John S. Baras 2020

Optimization Based task planning 
with space and time tolerances

55Lin and Baras, 2018-2020



Copyright © John S. Baras 2020

Space and Time Tolerances 
in Task Planning

Planned Path 2 is referred 

over planned Path 1, since it 

has a better space tolerance. 

Path 1

Path 2

Tolerances are import factors 

of the plan, runtime execution 

may differ from planning. 

•

•

Lin and Baras, 2018-2020 56
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Space and Time Tolerances 
in Task Planning

all three signals are considered

as satisfying ◊[a,b](x > 0) from t = 0 at 

the same degree.

For 𝜔2, the specification will be 

violated if we disturb x a little

For 𝜔3, the specification will be

violated if we shift the signal a little to 

the right

•

•

•

57
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Space and Time Tolerances 
in Task Planning

Definition (Space Robustness)

Space robustness quantifies how well a given signal s satisfies a given

formula. The robustness degree is calculated recursively according to

the quantitative semantic:

58
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Space and Time Tolerances 
in Task Planning

Definition (Time Robustness)

The left and right time robustness of an STL formula with respect

to a trace s at time t are defined as follows

𝜃− 𝑠, 𝑓 𝑠 , 𝑡 = max(𝑑 ≥ 0, 𝑠. 𝑡. ∀𝑡′ ∈ 𝑡 − 𝑑, 𝑡 , (𝑠, 𝑡) ⊨ 𝜑 ⇔, (𝑠, 𝑡′) ⊨ 𝜑)

𝜃+ 𝑠, 𝑓 𝑠 , 𝑡 = max(𝑑 ≥ 0, 𝑠. 𝑡. ∀𝑡′ ∈ 𝑡, 𝑡 + 𝑑 , (𝑠, 𝑡) ⊨ 𝜑 ⇔, (𝑠, 𝑡′) ⊨ 𝜑)

How much can we shift a signal to the left (or right), such that the 
specification is still satisfied? 

59
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Space and Time Tolerances 
in Task Planning

max
𝑢(𝑡)

𝛼 𝑟𝑡𝑖𝑚𝑒 + 𝛽 𝑟𝑠𝑝𝑎𝑐𝑒

Subject to 𝑥 𝑡 + 1 = 𝑓(𝑡, 𝑥 𝑡 , 𝑢 𝑡 )

𝑢𝑚𝑖𝑛≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥

𝑿𝑡0 ⊨ 𝜑

• 𝛼 and 𝛽 are the weighting coefficient and we

have 𝛼 + 𝛽 = 1

• The timed temporal constraint 𝐗𝐭𝟎 ⊨ 𝝋 can be

converted into convex and integer constraints.

• We consider linear robot dynamics (for nonlinear

dynamics use linearization)

60
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Space tolerance

Time tolerance

Robot path that maximizes space-time tolerances 
under noise free environment

Optimization problem

=> Transformed into MIL constraints

Space and Time Tolerances in Task Planning

Space and time tolerances induce space and time robustness (robustness degrees)

Signal Temporal Logic (STL) specs, transformed 
to “convex” constraints or unions of such

61Lin and Baras, 2020 IFAC World Congress
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Self-Monitoring and 
Self-Corrections 

• Given reference inputs obtained in planning phase: Ur

• We are constantly evaluating whether the predicted 

trajectory Xp still satisfies the given specification and 

maintains a specific tolerance degree

• Xp is made of  the trajectory we have observed so 

far Xo and the resulting future trajectory with 

reference input. 

62
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Event-triggered MPC

• An event-triggered MPC is designed for runtime self-correction

• MPC will be triggered if

or

• MPC: solve the optimization problem with a horizon T, and 

only apply the first control input

, 𝑢𝑚𝑖𝑛≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥
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Case Studies

64
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• Actual path may deviate from planning due to noise.

• An event-triggered MPC is designed for runtime self-correction.

Optimization problem with a horizon T

Desired path

Path without MPC

Path with MPC

Space and Time Tolerances in Task Planning:  
Self Monitoring and Self-Corrections

65

• Given reference inputs obtained in planning phase: Ur

• We are constantly evaluating whether the predicted trajectory Xp still satisfies the given 

specification and maintains a specific tolerance degree

• MPC will be triggered if or

Lin and Baras, 2020 IFAC World Congress
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Space and Time Tolerances in Task Planning:  
Self Monitoring and Self-Corrections

66Lin and Baras, 2020 IFAC World Congress
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Reinforcement learning with 

complicated tasks under finite 

time constraints

Lin and Baras, 2019-2020 67
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Task Workspace

States: 20 by 20 grid

Actions: move up, down, 
left, or right at speed of 
1 or 2

68
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Temporal logic to automaton 

The robot can accomplish the task by achieving either one of the 

objectives:

(1) do not visit position d until e has been visited, then once 

position e has been visited, eventually return to position d between 

8 and 15 time units.

(2) do not visit position a until b has been visited, and after visiting 

b, the robot has to immediately visit position c between 5 and 10 

time units, and eventually return to position a

Translate specification into LTL3 monitor automaton without 
considering time constraints first! 

Task 1 Task 2 

69
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Temporal logic to automaton 

[1] LTL3 tool: http://ltl3tools.sourceforge.net/ 70

http://ltl3tools.sourceforge.net/
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Temporal logic to automaton 

1. Hard to design reward functions. 

2. Hard to factor time into consideration. 

3. Low Training efficiency.

71
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Sub-task automaton –
Transition Systems

Time requirement 

on visiting c 

No time requirement 
on visiting c 

72
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A A O

x

y

time

Position A

O

Becomes green states 
only between 2 seconds 
and 3 seconds. 

State O is red for all time 
due to the always 
requirement. 

Reinforcement Learning 
in extended State Space

Extended State!

𝑆𝑒𝑥𝑡 = 𝑆 × 𝑄𝑖
𝜑
× 𝑉𝜑

73
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Reinforcement Learning 
in extended State Space

• Reward function based on sub-task automaton progression:

•

• rp: Positive reward if the next 
state s’ has a better progression 
(smaller d value)
•  rn: Negative reward if the next 
state s’ is a bad state
•  rs: Neutral reward if the next 
state s’ has the same progression 
as current state s

𝑄𝑖
𝑛 𝑆𝑖

𝑒𝑥𝑡,𝑛, 𝑎𝑛 = 1 − 𝛼 𝑄𝑖
𝑛−1 𝑆𝑖

𝑒𝑥𝑡,𝑛, 𝑎𝑛 + 𝛼 ∙ [𝑅 𝑆𝑖
𝑒𝑥𝑡,𝑛, 𝑎𝑛 + 𝛾max

𝑎
𝑄𝑖
𝑛−1 𝑆𝑖

𝑒𝑥𝑡,𝑛+1, 𝑎 ]

Learning 
rate

Reward 
function Estimate of 

optimal future 
value
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Case Study

1. Path followed by b->c->a

2. Task accomplished

75
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1. Path followed by 
b→c[5,10]→a initially

2. a is not reachable by 
following the plan

3. Now follow 
b→c→e→d[8,15]

4. Task accomplished

Case Study

76
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Teaching Robots Manipulation 

Tasks

Baras, Aloimonos, Fermuller, Mao, Luan, 2014-2018 77
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Example Task: Transferring

◼ New preferences/objectives
❑ Avoid bowl above it OR around it? bottle or knife?

❑ Adjust the objective of adapted trajectory

❑ Learn preferences to adapt movement in new situation

Feedback Demonstrations Movement Adaptation after learning

78
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Teaching Manipulation 

Tasks: Our System

79
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Example: Opening

Microwave

• Given sequential task with three primitives

• Motion planning

– Subgoals generation and selection

– Motion planning for each primitive action

Reaching Grasping Pulling Opening Inserting Opening

Subgoal:grasping location Subgoal:pulling angle Subgoal:inserting angle

80
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Approach

81
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Opening Microwave

82
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Attention, Object Detection, 

Recognition

• Large demands of robots automation

• Fundamental task: object detection & 

recognition

83
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Microwave Operation

84
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Applications in Human-Robot Collaboration

Learning by demonstration with spatio-temporal constraints

Learned Task

Cost-oriented obstacle avoidance

Human-Oriented

Obstacle avoidance

Baras et. al., Co-active learning to adapt Humanoid Movement for manipulation

Perception: 

Object Detection

Task Generalization:

Invariant Features

Self-Assessment:

Ask Feedback from User

85

AI and ML – our Approach 

Baras, Aloimonos, Fermuller, Mao, Luan, 2014-2018
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Swarms and Collectives 

• Learning coordination laws of biological and man-made swarms from observed 
trajectories

• Employ port-Hamiltonian formalism because it links concretely with 
mathematical physics methods used (symmetries, invariants, Noether’s
theorems) and because it can be used to model any multi-physics system 

AI and ML can help in all 
steps of the work flow:
• Model generation
• Sparse learning
• Symmetry discovery
• Structure preserving 

model reduction
• Discovering and 

simplifying collaboration 
and communication laws 
in swarms

Joint work between 
UMD and PARC

Funded by DARPA DSO

Mavridis, Tirumalai, Baras, 2020 IEEE CDC; DARPA Reports 2019-2020 86
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Boids (Reynolds, 

http://www.red3d.com/cwr/boids/)

87

(a)                                              (b)                                              (c)

(a) Boid animation of birds in complex environments 

(http://nervo.tv/index.html?sect=5&proj=foxmovies); (b) ‘bubles’ of different shapes 

from slow to higher velocities; (c) diverse bubbles navigating obstacles to a goal 

http://www.red3d.com/cwr/boids/
http://nervo.tv/index.html?sect=5&proj=foxmovies
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Learning Swarm Coordination Laws: Status

Learning Complex 
Flocking Coordination 

Laws

Microscale: Port-Hamiltonian 
Behavior Representation

Macroscale: Wave-like PDEs

Large-Scale Learning Framework

• Build a novel mathematical and software framework to learn coordination laws, of 
biological and man-made autonomous ensembles (swarms) from observed 
trajectories (robust to noise and missing data).

Mavridis, Tirumalai, Baras, 2020 IEEE CDC; DARPA Reports 2019-2020

• Learning coordination laws of dynamics, 
symmetry maps, invariants, conservation laws and 
reduced models from real or 
simulated flock data 

• Port-Hamiltonian modeling of 
particle (agent) interaction for 
robust representation and learning

• Learning Dynamic Leadership profiles, 
leaders, clusters of followers

• Macroscopic hydrodynamic PDE model (mean field) for learning 
coordination laws from density evolution

• Methodology for homeogeneous
and heterogeneous potentials, 
Boids models profiles, number of 
leaders, clusters of followers

• Developed fast. Accurate algorithms 
scalable to thousands of agents

88
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Learning Interaction Dynamics from Density Evolution

Problem: Requires Solution of Partial Integro-Differential Equations 

Solution:

• Learning Interaction Laws from Particle Trajectories
Density Evolution

Computation Times for Nonlocal Terms

Interaction function = Green’s function for

*real-life data?

• Simulation and Reconstruction of Complex 
Swarm Maneuvers in 2D and 3D in both 
microscopic and macroscopic domains, 
capturing

• Velocity Alignment and Spatial Cohesion
• Obstacle and Collision Avoidance
• Dynamic Leadership and Strong Wind effects
• Particle Dynamics and the Chorus-Line effect

Mavridis, Tirumalai, Baras, 2020 IEEE CDC

Boids
Learned

89
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Machine Learning and Artificial Intelligence:

New Foundations 

90
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• Supervised Counterpart of VQ (Kohonen)

• Unsupervised Self-Organizing Map (SOM)                

• Online/Stochastic Algorithm; Convergence 

([Baras& LaVigna1991]) under convex metric

• Interpretable, Robust, Data-Driven and Topology-Preserving

• Sparse in the sense of memory complexity, fast to train and evaluate

• Consistent Classifier

• Widely used in time series, speech analysis and biomedical applications

• Impressive robustness against adversarial attacks [SHRV2019]

Learning Vector Quantization – A Competitive-
Learning Neural Network

[SHRV2019] Saralajew, Holdijk, Rees, Villmann, ArXiv, 2019;  

LVQ Algorithm
Stochastic Approx. Algorithm

[MB2020] Mavridis and Baras. 2020 IFAC World Congress

MB2020

91
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• A novel dissimilarity measure in Bregman Divergences

Learning Vector Quantization with Bregman 
Divergences

[MB2020] Mavridis and Baras. 2020 IFAC World Congress

• Euclidean Distance is a Bregman divergence
• Kullback-Leibler divergence is a Bregman divergence; 

Unnormalized KL works as well

• Can handle multidimensional numerical and Boolean inputs

• Correspondence with misclassification error probabilities (Hoeffding’s inequality) 

• Simplifies optimization steps in EM algorithms and improves efficiency of EM algorithms (LVQ, 
Soft-Clustering)

• Convergence of LVQ with Bregman Divergences [MB2020] 

• Legendre duality with exponential family of densities 

92
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Decision Boundary

Initial random weights

93
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Present a training instance / adjust the weights

Decision Boundary (cont.)

94
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Present a training instance / adjust the weights

Decision Boundary (cont.)
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Present a training instance / adjust the weights

Decision Boundary (cont.)

96
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Present a training instance / adjust the weights

Decision Boundary (cont.)

97
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Eventually ….

Decision Boundary (cont.)
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Extension to LTSVQ and Interpretation

Extension to Learning TSVQ

• Combine LVQ with Deterministic 
Annealing -- Clustering error vs Purity 
of the Cluster (Entropy)

• Step needed for full analysis of WTSVQ 
and application in progressive 
classification (combined compression 
and classification framework)

• LTSVQ approximates directly the 
optimal Bayes surface with successive 
approximations and  variable (along 
the surface) resolution
• Split cells where approximation is not 

very good using finer resolution data

• Akin to a multigrid numerical 
computation of the Bayes surface

• Application to state aggregation in 
control

Baras & Dey, IEEE T IT, 1999; Baras & Borkar, 2000 IEEE CDC 99
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Multiresolution Learning Clustering

• Address hierarchical organization of signal databases, progressive classification:

• Combine a multiresolution preprocessor with a learning clustering postprocessor

• Novel: Local and Global Feedback  → Recurrent CNN (RCNN)

• Resulting algorithms proved to have some “universal” qualities

• Found analogs of such algorithms in animals and humans: 

• Hearing  and  sound  classification

• Vision and  identification  of  objects  by  humans

• Mathematical formulation: combined compression and classification for general signals

• “One Learning Algorithm” Hypothesis : Auditory cortex learns to see [Row et al, 1992], 
Somatosensory cortex learns to see [Metin & Frost, 1989]

• Our work on this problem started in the 90’s working on multisensory ATR for the Navy!

• Parallelizable easily; Faster training; Insertion of new models easy

• Applied to compression and control (via state aggregation) 

Multiresolution
Preprocessor

Symmetries 
(Nonlinear)

Features

Learning Clustering
Postprocessor

f

Feedback

Class

Baras & Dey, IEEE T IT, 1999; Baras & Borkar, 2000 IEEE CDC 100
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Knowledge Graphs and 

Semantic Vector Spaces

Need to Integrate Semantic Vector Space Models 

and Knowledge Graphs (Hypergraphs) Models

Convert the h-hop neighborhood of each node u in G into a multi-
dimensional vector RG(u)={⟨u′, wu(u′)⟩}, based on the distance of neighbor
nodes u′ from u.

Information Propagation

u1

u2 u3

u4

u5

Distance between u and u’

Previous Applications of Information Propagation: 
Semi-supervised Learning  [AI’ 08], Concept 
Propagation [CIKM ’06]
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• Rigorous Mathematics for Deep Networks – Universal 
Architecture emerging

• Non von-Neumann computing – do not separate CPU from 
Memory – Synaptic NN, in-memory processing -- HTM

• Universal ML -- Integrate Deep NN and Synaptic NN

• Knowledge Representation and Reasoning: Integrate Knowledge 
Graphs and Semantic Vector Spaces

• Progressive Learning, Knowledge Compacting

• Link Machine Learning with Knowledge Representation and 
Reasoning

• Inspirations from neuroscience

Advancing AI and ML for 
Autonomy: our Approach 

102
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Composable Autonomy V&V
Proposed Novel Approach 

• Formal models of tasks and missions combining 

spatial and temporal tolerances

• Composability: Requirements, Models, Tasks, 

Formal Models (Timed Automata, MITL, STL, 

contracts), Sensing, Control, Optimization 

• Self-monitoring, self-learning and self-adjustment for 

correct autonomous execution of tasks

• Integrate composability methods and algorithms, 

with the rigorous model-based systems engineering 

methodology and framework we have developed 

(Baras) 

103

AKA Trusted Autonomy:  
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MODEL-BASED SYSTEMS ENGINEERING

COMPONENTS -- ARCHITECTURE

104

Iterate to Find a Feasible Solution /  Change as needed

Define

Requirements

Effectiveness

Measures

Create

Behavior

Model

Assess

Available

Information

Create

Structure

Model

Specifications

Perform

Trade-Off

Analysis

Create

Sequential

build & 

Test Plan

Change structure/behavior model as needed

Map behavior 

onto structure

Allocate 

Requirements

Generate

derivative

requirements

metrics

Model- - based

UML - SysML - GME - eMFLON

Rapsody

UPPAAL

Artist Tools

MATLAB, MAPLE

Modelica / Dymola

DOORS, etc

CONSOL-OPTCAD

CPLEX, ILOG SOLVER,

Integrated System Synthesis   Tools -

& Environments missing 

Iterate to Find a Feasible Solution /  Change as needed

Define

Requirements

Effectiveness

Measures

Create

Behavior

Model

Assess

Available

Information

Create

Structure

Model

Specifications

Perform

Trade-Off

Analysis

Create

Sequential

build & 

Test Plan

Change structure/behavior model as needed

Map behavior 

onto structure

Allocate 

Requirements

Iterate to Find a Feasible Solution /  Change as needed

Define

Requirements

Effectiveness

Measures

Create

Behavior

Model

Assess

Available

Information

Create

Structure

Model

Specifications

Perform

Trade-Off

Analysis

Create

Sequential

build & 

Test Plan

Change structure/behavior model as needed

Map behavior 

onto structure

Allocate 

Requirements

Integrated Multiple 
Views is Hard !

Model - Based

Information - Centric

Abstractions

SIEMENS, PLM, NX, TEAM CENTER
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The Challenge & Need:

Develop scalable holistic methods, models and tools for 

enterprise level system engineering   

ADD & INTEGRATE
• Multiple domain modeling tools

• Tradeoff Tools (MCO & CP)

• Validation / Verification Tools   

• Databases and Libraries of annotated 

component models from all disciplines

BENEFITS 

• Broader Exploration 

of the design space

• Modularity, re-use 

• Increased flexibility, 

adaptability, agility

• Engineering tools 

allowing conceptual 

design, leading to full 

product models and 

easy modifications

• Automated 

validation/verification

Multi-domain Model Integration         System Modeling Transformations

via System Architecture Model (SysML) 

APPLICATIONS
• Avionics
• Automotive
• Robotics
• Smart Buildings
• Power Grid
• Health care
• Telecomm and WSN
• Smart PDAs

• Smart Manufacturing  

“ Master System Model”

ILOG SOLVER, 
CPLEX, CONSOL-

OPTCAD

DB of system 
components 
and models

Update System 

Model Tradeoff parameters

105

A Rigorous Framework for  
Model-based Systems Engineering 
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Requirements Engineering

• How to represent requirements?

• Automata, Timed-Automata, Timed Petri-Nets

• Dependence-Influence graphs for traceability

• Set-valued systems, reachability, … for the continuous parts

• How to automatically allocate requirements to components?

• How to automatically check requirements?

• Approach: Integrate contract-based design, model-checking, 
automatic theorem proving

• How to integrate automatic and experimental verification?

• How to do V&V at various granularities and progressively as 
the design proceeds – not at the end?

• The front-end challenge: Make it easy to the broad 
engineering user? 

106
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MBSE and the need for 
Contract Based Design

• The state-of-the-art Model Based Systems 
Engineering (MBSE) framework allows multi-
domain model integration via SysML, trade-off 
analysis and verification/validation tools in for the 
development of complex systems.

• However, the current iteration of SysML does not 
permit the formalization of requirements which can 
then be tied together to model driven engineering 
to enable Correct-by-Construction designs. 

• On the other hand, compositional approaches such 
as contract based design offer a comprehensive 
framework for early requirement validation with 
tight safety, reliability and performance guarantees 
and for scalable, system-level design space 
exploration under a set of heterogenous 
constraints.
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Contracts for Learning-Enabled 
Systems

• Enhance system with mathematically rigorous learning 
components, including ML and AI components

• Add assurance on these learning components
• A/G contracts encode the behavior of individual 

components
• Designer can model the behavior of the learning-

enabled components working side-by-side with other 
components

• Incorporate assurance states, risk states
• Strong connections with risk-based stochastic control 

and prediction with the addition of temporal 
constraints.

• Leads to efficient use of model-checking systems

108
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Dexterous Robotic Hand Grasping 
with Slippage Detection, Learning 

and Self-correction

Zhenyu Lin, Charles Meehan, John Baras

109
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Haptic-Vision Dataset

Haptic-Vision Dataset:
● Collected synchronized haptic and 

vision data for 80 experiments
● Haptic data is sampled at 100HZ 

with five modalities
● Vision data with resolution 1080P  

and 30fps framerate

● Slippage moment t* is labeled for 

each experiment

(a) BioTac Sensor Schematic                       (b) Electrodes Locations

Sample vision data from experiment

Haptic data sensory modality

110
Lin, Meehan, Baras, 2019 DGR Symp., IJRR, IEEE JRA, INCOSE SE 
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Median Flow Tracker: Slippage Detection 
Using Tactile Sensor

• Median flow tracker is used to detect the time t* 

that slippage occurs for each experiment. 

• Since there is only one possible direction of 

movement, the tracker has a high accuracy. 

• Analyze the statistics of the haptic data around t* 

• Found peak correlation around moment of 

slippage

• Fluid pressure (PDC) used to estimate 

the force applied on the object

• Relationship between PDC and force 

is piece-wise linear (Coulomb model)

• Force estimation is very accurate 

within [0,1]N range

• During self-correction, the robot will 

apply suitable force based on weight 

estimation of grasped object  

111Lin, Meehan, Baras, 2019 DGR Symp., IJRR, IEEE JRA, INCOSE SE 
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Controller
(PID)

Detection Module

Shadow 
Hand

Correlation
Calculation

Tactile
Sensors

Current 
Force 

Estimate

Desired 
Force

Estimate

Vision
Sensor

e(t)
+

-

Training 
Data 

around t*

S(t)

XR(t)

Pdc(t)

XH(t)

u(t)r(t)

x(t)

Slippage Detection and Self-
Correction Framework

Lin, Meehan, Baras, 2019 DGR Symp., IJRR, IEEE JRA, INCOSE SE 112
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Object Classification

• We observe that the vibration sensor

(PAC) data is very different between

soft container and rigid container

• If an object is classified as soft, we

will set another empirical threshold

for the force applied on the object (a) Soft Container 

(b) Rigid Container 

• Performance based on 
detection time error: 

• Our LSTM approach similar to (Wyk, Falco, 2018)
• Our approach has higher accuracy

113Lin, Meehan, Baras, 2019 DGR Symp., IJRR, IEEE JRA, INCOSE SE 



Copyright © John S. Baras 2020

MBSE Framework for Dexterous Robotic Hand

114

• Created SysML architecture diagrams to model the structure and behavior of 
the robotic system (included UR10 arm, Shadowhand, BioTac sensor)

• Implemented Lua, MATLAB, and Python scripts to control the CoppeliaSim
simulation. Vortex Studio used for stable grasping.

• Connected Cameo Systems Modeler (SysML) to the robotic simulation. 
Essentially creating a “Digital Twin” Framework.

• Designed and evaluated a slippage detection and correction algorithm for 
the experiments in the lab and simulation.

• Validated stakeholder requirements, verified the simulation requirements. 
• Many behavior diagrams were created, including those modeling the 

slippage detection and correction problem in simulation.
• Main goal was to start simulation from Cameo Systems Modeler with certain 

input parameters, conduct simulation in a robotic simulator (CoppeliaSim), 
and receive the output metrics back into Cameo Systems Modeler once the 
simulation has ended.

• Used framework to optimize the rotational velocity of the finger and thumb 
joints used during the correction stage.

Meehan, Baras, INCOSE SE, IEEE SYS 
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Robotic System Context-Level BDD: System

115Meehan, Baras, INCOSE SE, IEEE SYS 
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Shadow Hand BDD

116
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“Digital Twin” (Simulation) Demo

117

Meehan, Baras, INCOSE SE, IEEE SYS 
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“Digital Twin” (Simulation) Demo: Shadow Hand 

Grasping Simulation with Force and No Correction

118Meehan, Baras, INCOSE SE, IEEE SYS 
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“Digital Twin” (Simulation) Demo: Simulation of 

Slippage Detection and Correction Problem

119Meehan, Baras, INCOSE SE, IEEE SYS 
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Demo: Grasping without 
and with self-correction

120Lin, Meehan, Baras, 2019 DGR Symp., IJRR, IEEE JRA, INCOSE SE 
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Multi-Agent  Autonomous Systems: 
Multiple Coevolving Multigraphs

• Multiple Interacting Graphs 
• Nodes: agents, individuals, groups
• Directed graphs
• Links: ties, relationships
• Weights on links : value (strength, 

significance) of tie
• Weights on nodes : importance of 

node (agent)
• Real-life problems: Dynamic, 

time varying graphs,  
relations, weights, policies

121

Information 
network

Communication 
network

S

ijw : S

ii w

: S

jj w

I

klw: I

kk w : I

ll w

C

mnw: C

mm w
: C

nn w

Agents network

• We introduced these models -- 2010 

• Used them recently to model Net-CPS, Net-CHPS

• Investigated effects of topology: proved Small World Graphs 
speed up consensus (probabilistic argument) 
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Multi-Agent  Autonomous Systems: 
Multiple Coevolving Multigraphs

• Investigated coalition formation via constrained coalitional games

• Showed expander graphs are “best” topologies for communication

• Showed effects of communication topology on convergence speed and 
robustness of MA algorithms

• Proved the stability of car platooning  (long standing problem)

• Developed and analyzed extremely simple distributed algorithms achieving 
system optimality – with no communication or with just one bit 
communication -- currently studying ways to speed up

• Showed emergence of motifs in communication graph for simpler controls

• Proved a simple version of Arrow’s 1974 conjecture: Trust is a catalyst for 
collaboration

• Investigated dynamics of trust and mistrust

• Investigated dynamics of various types of signed networks
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Multi-Agent  Autonomous Systems: 
Multiple Coevolving Multigraphs

• Developed novel partially ordered semiring model for indirect trust dynamics
• Showed that dynamic trust mechanisms are essential for achieving consensus 

in the presence of adversaries (applications to various distributed algorithms)
• Showed the need for noncommutative probability models (von Neumann like) 

for MA systems
• Recently initiated investigation of joint optimization of information and control 

– led to discovery of new values of information (non Shannon)
• Showed the interactions between information and control lead to constrained 

event algebras that can only be modeled by “Independence Friendly Logic”, 
which has game theoretic semantics

• Investigation of the effects of resource constraints, stress, etc. on human 
decision making using these noncommutative probability models 

• Investigation of the emergence of noncommutative probability models in 
asynchronous autonomous networked systems, and human machine teams –
connections to neuropsychology and human behavior  studies

• Investigation of connections to human cognition, decision making, risk

123
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Outreach and Collaborations:
On-Going Applications

124
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• Focus on the problem of highway on ramp merging 
with cooperation and communication between 
vehicles and infrastructure 

• Key Issues: 

• Overflow effect caused by merge delay in which outer 
lanes of highway becomes congested

• Delay caused in both merging traffic and highway 
traffic

• Unfair allocation of merging rights (Varying priorities)

• Fairness and robustness of algorithms under changing 
traffic densities

• Sensor suite: 

• Radar sensors, lidar sensors, odometry sensors and speed 
traps

• V2I communication and V2V communication

Highway on-ramp merging control with V2X 
information

1 2 5

Nilesh Suriyarachchi and John Baras, with Maryland Transportation Institute
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Integration of Ramp Metering Control and Route 
Guidance Strategy for Beltway Networks Using 

Model Predictive Control

126Fatima Alimardani and John Baras, with Maryland Transportation Institute
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Car Overtake Problem

• Problem: Generation of trajectories and 
control laws for the autonomous ego vehicle 
to safely overtake a human-driven vehicle 
travelling in the same direction while avoiding 
the oncoming traffic in the adjacent lane

• Objective: Stochastic control formulation of 
the problem employing metric temporal logic 
constraints in order to satisfy the safety 
guarantees

• Outcome: A robust and safe algorithm which 
will be implemented and tested in a 
simulation environment

127Faizan Tariq and John Baras, with Maryland Transportation Institute and General Motors
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Autonomous Vehicle Parking Control  

• Key Research Aspects

• Velocity control

• Dynamic velocity adjustment for obstacles

• Velocity adjustment along curves

• Obstacle Avoidance with Neural Nets

• Reverse Parking Logic Control

• Importance of States

• Transition Logic accuracy

• Accuracy and repeatability of 

algorithm

• Parking Spot Detection

• Minimal cost/complexity 

solution

• Robustness for dynamic environments

• Noise rejection

1 2 8

Nilesh Suriyarachchi and John Baras, with STEER 
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Autonomous Indoor Navigation using Visual SLAM

• GOAL: To perform robust, cost efficient autonomous navigation on off the shelf robotic 
platforms using Visual SLAM

• Key Research Aspects

• Cloud based computing
• Reduces computation load in the robot

• Can use low cost simple robotic platforms

• Leverages 5G and advanced networking capabilities

• Multiple sensor fusion
• Critical for dealing with multiple input data streams

• Importance of time synchronization (Real-time applications)

• Stabilized data frame output

• Visual feature-based localization

• Graph SLAM optimization

• Hardware and software upgrades for robustness

• Multiple scenario testing 

Loomo

1 2 9
Nilesh Suriyarachchi and John Baras, with Nokia Bell Labs 
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Composable Autonomy and V&V for 
Distributed Heterogenous Sensor Networks

• Objective:
• Develop a novel methodology for the modeling, design and V&V 

of distributed ISR systems with heterogeneous sensors. 
• Methodology will be implemented into a prototype Model Based 

Systems Engineering (MBSE) framework for these systems.
• Such a rigorous MBSE methodology and framework for 

distributed sensor ISR systems does not exist today. 

• Tasks Description:
• Task 1: Select a small set of sensor types for the Wireless Sensor 

Network (WSN) model. Develop simple performance models for 
the performance of each sensor type in relation to the ISR use case.

• Task 2: Select a small number of sensors and a network 
architecture for modeling an initial distributed sensor ISR system. 
Specify the performance metrics and requirements.

• Task 3: Apply the new MBSE methodology to the resulting 
networked system. Ensure that a simple executable simulation 
works. Model specifications using metrics, constraints, contracts 
and timed automata as needed. Keep the overall system simple as 
time is limited.
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Other Collaborations

• Marilyn Duong – NRL Internship on human robot 
collaboration 

• Charles Meehan – NRL Internship on autonomous sensor 
networks

• John Baras – with Lynn Ewart and Scott Sideleau of USN 
NUWC Newport RI, on MBSE for hybrid autonomous UAS 
teams mission planning and operation

• David Hartman, Erfaun Noorari, John Baras with Brian Sadler 
of ARL on collaborative autonomous teams and RL 

• Christos Mavridis and John Baras – with Alex Duda and Neta
Ezer of Northrop Grumman on LVQ, SOM, and application to 
autonomous acoustic sensor networks
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Future Directions

• Develop further the framework for synthesis of autonomous systems with safety
• Develop further composability theory and methods (divide and conquer)
• Self-monitoring, Self-adjustment, for Correctness
• Incorporate advanced learning, safe learning, sensor fusion
• New “Value of Information” metrics and Control-Information duality
• Incorporate time and complexity metrics
• Investigate further new logics for autonomous teams (machine and human-

machine)
• Risk sensitive decision making, Prospect theory, autonomy, RL 
• Reverse engineer flocks and biological collectives
• Further demonstrations in UAV, robotic, autonomous ground vehicle examples 
• Unmanned ship and underwater vehicle applications
• Further demonstrations in UAV, robotic, autonomous ground vehicle examples 
• Unmanned ship and underwater vehicle applications
• Link to advanced simulators and on-line data input
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Thank you!

baras@umd.edu

301-405-6606

https://johnbaras.com/

Questions?
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https://johnbaras.com/

