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Abstract

We consider kinematic chains evolving on a �nite{
dimensional Lie group G under nonholonomic con-
straints, where snake{like global motion is induced by
shape variations of the system. In particular, we con-
sider the case when the evolution of the system is re-
stricted to a subspace h of the corresponding Lie alge-
bra G; where h is not a subalgebra of G and it generates
the whole algebra under Lie bracketing. Such systems
are referred to as G{Snakes. Away from certain singu-
lar con�gurations of the system, the constraints spec-
ify a (partial) connection on a principal �ber bundle,
which in turn gives rise to a geometric phase under
periodic shape variations. This geometric structure
can be exploited in order to solve the nonholonomic
motion planning problem for such systems.

G{Snakes generalize the concept of nonholonomic
Variable Geometry Truss assemblies, which are kine-
matic chains evolving on the Special Euclidean group
SE(2) under nonholonomic constraints imposed by
idler wheels. We examine in detail the cases of 3{
dimensional groups with real non-abelian Lie algebras
such as the Heisenberg group H(3); the Special Or-
thogonal group SO(3) and the Special Linear group
SL(2):

1. Introduction

Of signi�cant interest among mechanical systems sub-
ject to nonholonomic constraints are those wherein
variations of shape induce, under the in
uence of the
constraints, a global motion of the system. A well{
known example is that of a free{
oating multibody
system in space (e.g. robotic manipulators mounted
on orbiting satellites), where periodic movements of
the joints induce a reorientation of the system under
the nonholonomic constraint of conservation of angu-
lar momentum [6,10].

Inspired by the experimental work of Joel Burdick and
his students at Caltech [2,3], a novel system that uses
the above principle for land locomotion was introduced
in [7,8]. There, a Variable Geometry Truss (VGT) as-
sembly consisting of longitudinal repetition of truss
modules, each one of which is equipped with idler
wheels and linear actuators in a planar parallel ma-
nipulator con�guration, uses periodic changes of the
shape of each module to produce global motion (�g.
1).
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The locomotion principle is not based on direct ac-
tuation of wheels, but rather on the nonholonomic
constraints imposed on the motion of the system by
the rolling{without{slipping of the idler wheels of each
module on the supporting plane. This results in a
snake{like motion of the VGT assembly, which is not
too far, at least in principle, from certain modes of
actual snake locomotion [4]. Both the shape and the
con�guration of the VGT assembly can be described
by elements of the Special Euclidean group SE(2); the
group of rigid motions on the plane. A system like the
VGT assembly constitutes a kinematic chain evolving
on this matrix Lie group, with the corresponding ve-
locities given by elements of the Lie algebra of SE(2):
Of these velocities, the shape variations can be consid-
ered as the controls of the system and they are referred
to as shape controls. The nonholonomic constraints
allow us to express the global motion of the VGT as-
sembly as a function of only the shape and the shape
controls and to formulate motion control strategies un-
der periodic shape controls.

This situation can be generalized to kinematic chains
evolving on an arbitrary (matrix) Lie group G under a
certain class of nonholonomic constraints. In particu-
lar, we are interested in groups with a real non{abelian
Lie algebra G (of �nite dimension n) and `{node kine-
matic chains evolving on them, subject to ` constraints
which force the velocities of the system to lie in a sub-
space of G; which is not a subalgebra of G but which
generates the whole algebra G under Lie bracketing.
We refer to systems of this type as G{Snakes and ob-
serve that they possess an interesting geometric struc-
ture: When ` = n and the codimension of the con-
straints is one, the con�guration and shape spaces of
the system specify a principal �ber bundle [1,11] and
the nonholonomic constraints specify a (partial) con-
nection on it, at least away from certain con�gurations
which we call nonholonomic singularities (higher codi-
mension cases will be treated elsewhere).

In section 2 of this paper, we consider an `{node kine-
matic chain evolving on an n{dimensional Lie group.
The Wei{Norman representation of G [13], which ex-
presses each element of the group as a product of the
one{parameter subgroups of G; and the notion of the
adjoint action of G on G allow us to express in a com-
pact form how the motion of each module of the kine-
matic chain relates to that of the other modules and
to the global motion of the system and how this latter
becomes a function of just the shape and the shape
controls because of the nonholonomic constraints. We
show that the con�guration and shape spaces of the
G{Snake specify a principal �ber bundle and that the
nonholonomic constraints specify a connection on it.

In section 3 we focus on 3{node G{Snakes (` = 3)
evolving on 3{dimensional Lie groups (n = 3): In par-
ticular, we examine, apart from SE(2); the Heisenberg
group H(3); the Special Orthogonal group SO(3) and



the Special Linear group SL(2):

In section 4 we comment on possible motion planning
schemes for those systems. See also [7,8].

In section 5 we discuss possible further extensions of
this work. For reasons having to do with ease of expo-
sition, we limit ourselves to matrix Lie groups in this
paper. Extensions to arbitrary Lie groups are easy.
For the sake of brevity most proofs are omitted. The
interested reader should consult [9].

2. Snakes on Lie Groups

2.1. Preliminaries

Consider a left{invariant dynamical system on a ma-
trix Lie group G with n{dimensional Lie algebra G:
For g 2 G; the left translation by g is de�ned as the
map Lg : G ! G : h 7! gh; for h 2 G: If e is the
identity of G, then TeLg is the tangent of the map Lg
at e: Consider a curve g(:) � G: Then, there exists a
curve �(:) 2 G such that:

_g = TeLg � � = g� : (1)

Let fAi; i = 1; : : : ; ng be a basis of G and let [:; :]
be the usual Lie bracket on G de�ned by [Ai;Aj ] =
AiAj �AjAi: Then, there exist constants �

k
i;j ; called

structure constants, such that:

[Ai;Aj ] =

nX
k=1

�k
i;jAk ; for i; j = 1; : : : ; n: (2)

Let G� be the dual space of G; i.e. the space of linear
functions from G to IR: Let fA[

i ; i = 1; : : : ; ng be the
basis of G� such that

A[
i(Aj) = �ji ; for i; j = 1; : : : ; n; (3)

where �ji is the Kronecker symbol. Then the curve
�(:) � G can be represented as:

� =

nX
i=1

A[
i(�)Ai : (4)

Proposition 1 (Wei and Norman [13]) Let g(0) = e;
the identity of G and let g(t) be the solution of (1).
Then, locally around t = 0; g is of the form:

g(t) = e
1(t)A1e
2(t)A2 � � � e
n(t)An ; (5)
where the coe�cients 
i are determined (by di�eren-
tiating (5) and using (1)) by:0

B@
_
1
...
_
n

1
CA =M(
1; : : : ; 
n)

0
B@
A[
1(�)
...

A[
n(�)

1
CA : (6)

The matrix M is analytic in 
 and depends only on
the Lie algebra G and its structure constants in the
given basis. If G is solvable, then there exists a basis
of G and an ordering of this basis, for which the rep-
resentation (5) is global. Then the 
i's can be found
by quadratures.

De�nition 2 (Adjoint Action) For g 2 G and � 2 G;
de�ne the adjoint action of G on G denoted Adg : G !
G by:

Adg�
def
= g�g�1 : (7)

The following de�nitions are based on [1,11].

De�nition 3 (Principal Fiber Bundle) Let S be a
di�erentiable manifold and G a Lie group. A di�eren-
tiable manifold Q is called a (di�erentiable) principal
�ber bundle if the following conditions are satis�ed:
1) G acts on Q to the left, freely and di�erentiably:

� : G�Q! Q : (g; q) 7! g � q
def
= �g � q :

2) S is the quotient space of Q by the equivalence
relation induced by G; i.e. S = Q=G and the canonical
projection � : Q! S is di�erentiable.
3) Q is locally trivial, i.e. every point s 2 S has a
neighborhood U such that ��1(U) � Q is isomor-
phic with U � G; in the sense that q 2 ��1(U) 7!�
�(q); �(q)

�
2 U � G is a di�eomorphism such that

� : ��1(U)! G satis�es �(g � q) = g�(q);8g 2 G:

For s 2 S; the �ber over s is a closed submanifold of
Q which is di�erentiably isomorphic with G: For any
q 2 Q; the �ber through q is the �ber over s = �(q):
WhenQ = S�G; thenQ is said to be a trivial principal
�ber bundle.

De�nition 4 (Connection) Let (Q;S; �;G) be a prin-
cipal �ber bundle. A connection on this principal �ber
bundle is a choice of a tangent subspace Hq � TqQ at
each point q 2 Q (horizontal subspace) such that, if
Vq

def
= fv 2 TqQj��q (v) = 0g is the subspace of TqQ

tangent to the �ber through q (vertical subspace), we
have:
1) TqQ = Hq � Vq :
2) For every g 2 G and q 2 Q; Tq�g �Hq = Hg�q:
3) Hq depends di�erentiably on q:

2.2. The `{node G{Snake

We consider a dynamical system that evolves on the
Cartesian product Q = G� � � � �G| {z }

` times

: Its trajectory is

a curve g(:) = (g
1
(:); : : : ; g

`
(:)) � Q: On each copy of

G; the system traces a curve g
i
(:) � G; such that

_g
i
= TeLg

i
� �

i
= g

i
�
i
; for i = 1; : : : ; `; (8)

where �
i
(:) 2 G: We think of the g

i
's as the con�gura-

tion of the nodes of a kinematic structure (in particu-
lar, a kinematic chain).

A pair of nodes of the structure constitutes a module.
The shape g

i;j
of module fi; jg corresponding to nodes

i and j will be de�ned as:
g
i;j

= g�1
i

g
j
= g

i;i+1
� � � g

j�1;j
; i � j: (9)

Consider the corresponding shape variations �
i;j

� G
de�ned by:

_g
i;j

= TeLg
i;j
� �

i;j
= gi;j�

i;j
; i � j : (10)

Let the shape of the kinematic chain be given by the
(`�1){tuple (g

1;2
; g

2;3
; : : : ; g

`�1;`
) 2 S = G� � � � �G| {z }

(`�1) times

:

We call Q the con�guration space of the kinematic
structure and S its shape space. We can think of the
�
i
's as characterizing the global motion of the G{Snake

system with respect to some global coordinate system,
while the �

i;j
's capture the relative motion (or shape

variation) of nodes i and j:

From (8), (9) and (10) we get:
�
i
= �

i�1;i
+Adg�1

i�1;i
�
i�1

; i = 2; : : : ; `: (11)



Applying (11) iteratively we can express any �
i
as a

function of �
1
and of the shape controls �

1;2
; : : : ; �

i�1;i
as follows:

�
i
= �

i�1;i
+Adg�1

i�1;i
�
i�2;i�1

+ � � �+Adg�1
2;i
�
1;2

+Adg�1
1;i
�
1
:

(12)

As can be seen from (4), equation (12) is linear in
the components of �

1
and those of the �

i;j
's. De-

note by �i;j the vector of components of �
i;j
; i.e.

�i;j
def
=
�
A[
1(�i;j

); : : : ;A[
n(�i;j

)
�>

: Also denote by 
i;jk

the coe�cients of the Wei{Norman representation cor-
responding to g

i;j
� G:

2.3. Nonholonomic Constraints and Connec-
tions on Principal Fiber Bundles

In this section we consider nonholonomic constraints
acting on the G{Snake and we show that they specify
a connection on the principal �ber bundle associated
to our problem.

Codimension 1 Constraint Hypothesis: Assume
that the evolution of system (8) on each copy of G is
constrained to lie on an (n� 1){dimensional subspace
h of the Lie algebra G; where h is not a subalgebra of
G; i.e. �

i
2 h for i = 1; : : : ; `: Then, for some A[

� 2
G� (not necessarily an element of the basis fA[

i ; i =
1; : : : ; ng) we have h = Ker(A[

�): The constraints �i
2

h can then be expressed as:
A[

�(�i
) = 0; i = 1; : : : ; `: (13)

The constraints (13) are linear in the components of
the global velocity �

1
and those of the shape varia-

tions �
i;j
: This can be made explicit by de�ning the

composite velocity vector of the kinematic chain:

�
def
= ( �1

>
�1;2

>
� � � �`�1;`

>
)>

=
�
A[
1(�1

) � � � A[
n(�1

) A[
1(�1;2

) � � � A[
n(�`�1;`

)
�>

:

Proposition 5 The ` nonholonomic constraints (13)
can be written in matrix form as:

A(g
1;2
; : : : ; g

`�1;`
) � = 0 ; (14)

where A is a function of only the shape of the system
and is a block lower triangular `�n`matrix of maximal
rank of the form:
A =0
BBBBBBBB@

�1;1 0 0 0 0 � � � 0 0
�1;2 �2;2 0 0 0 � � � 0 0
...

...
. . . 0 � � � 0 0

�1;i �2;i � � � �i�1;i �i;i � � � 0 0
...

...
...

... � � �
. . . 0

�1;` �2;` � � � �i�1;` �i;` � � � �`�1;` �`;`

1
CCCCCCCCA
;

(15)
with the 1� n block �p;q; de�ned for p � q as:

�p;q =

�
A[

�(Adg�1
p;q
A1) � � � A[

�(Adg�1
p;q
An)

�
:

Proof The matrix form (14) is easily derived from
(12) and (13). The diagonal blocks �p;p of A have the
form

�
A[

�(A1) � � � A
[
�(An)

�
; therefore they contain at

least one non-zero constant term. Thus A has always
maximal rank.

Proposition 6 Assume ` � n: Partition � as (�2 �1);
with �2 an `{dimensional vector containing the com-
ponents of �

1
(and possibly some components of shape

variations), while �1 is an (n�1)`{dimensional vector
containing only components of shape variations. Let
the corresponding partition of A be (A2 A1); with A1
a (n� 1)`� ` matrix and A2 a locally invertible `� `
matrix. Then from (14):

�2 = �A�12 (g
1;2
; : : : ; g

`�1;`
)A1(g

1;2
; : : : ; g

`�1;`
)�1 :
(16)

Proof Follows from the smooth dependence of A on
the shape variables and the maximal rank property of
Proposition 5.

Because of equation (16), we call the elements of �1
the shape controls.

The physical signi�cance of this result is that, if the
global motion of the G{Snake is characterized by the
global motion of its �rst node (i.e. by �

1
), then, be-

cause of the nonholonomic constraints, variations of
the shape controls induce a global motion of the sys-
tem.

G{Snake con�gurations where A2 is singular for all
possible choices of the shape controls vector �1; will
be called nonholonomic singularities.

Consider now the manifolds Q and S de�ned in section
2:2 and the canonical projection � : Q! S de�ned by
equation (9), i.e.

�(g
1
; : : : ; g

`
)
def
=
�
g�1
1
g
2
; : : : ; g�1

`�1
g
`

�
=
�
g
1;2
; : : : ; g

`�1;`

�
:

(17)

Lemma 7 The quadruple (Q;S; �;G); together with
the action � of G on Q de�ned by

� : G�Q! Q

(g; q) =
�
g; (g

1
; : : : ; g

`
)
�
7! g � q =

�
gg

1
; : : : ; gg

`

�
;

(18)
is a trivial principal �ber bundle.

Proof The canonical projection � of equation (17) is
di�erentiable and its di�erential is
��q : TqQ! T�(q)S

(g
1
�
1
; : : : ; g

`
�
`
) 7! (g

1;2
�
1;2
; : : : ; g

`�1;`
�
`�1;`

) ;
(19)

where the �
i�1;i

are given by (11):

�
i�1;i

= �
i
�Adg�1

i�1;i
�
i�1

; i = 2; : : : ; ` : (20)

Theorem 8 Away from nonholonomic singularities
and when ` = n; i.e. when the number of nonholo-
nomic constraints equals the dimension of the group,
the nonholonomic constraints (13) specify a connec-
tion on the principal �ber bundle (Q;S; �;G); with
the horizontal subspace de�ned as follows:

Hq = fv 2 TqQ j v = (g
1
�
1
; : : : ; g

`
�
`
) and �

i
2 hg

= fv 2 TqQ j v = (g
1
�
1
; : : : ; g

`
�
`
) and

�2 = �A�12 (�(q))A1(�(q))�1 g ;
(21)

where �1 =
�
�1;2

>
�2;3

>
� � � �`�1;`

>�>
and �2 = �1 :



Proof Due to the left{invariance of our system,
TqQ = fv = (g

1
�
1
; : : : ; g

`
�
`
) j �

i
2 Gg: The vertical

subspace is (from (18)-(20))
Vq = fv 2 TqQ j ��q (�) = 0g

= fv 2 TqQ j (g
1;2
�
1;2
; : : : ; g

`�1;`
�
`�1;`

) = 0g

= fv 2 TqQ j �
1;2

= � � � = �
`�1;`

= 0g

= fv 2 TqQ j �
i
= Adg�1

1;i
�
1
; i = 2; : : : ; ` g :

(22)
Physically, the vertical subspace contains all in�nites-
imal motions of the kinematic chain that do not alter
its shape.

To show property (1) of De�nition 4, we �rst prove
that Hq \ Vq = f0g and then that dim(TqQ) =
dim(Hq) + dim(Vq): To show Hq \ Vq = f0g; assume
that there exists a non{trivial v = q � � 2 Hq \ Vq : By
the de�nition of Vq ; the corresponding shape variations
are zero. Thus �1 = 0 and, by the de�nition ofHq; also
�2 = 0: But then �

1
= 0 and from (22) also �

i
= 0; for

i = 2; : : : ; `: Thus � = 0: Thus Hq \Vq = f0g: Now ob-
serve that, away from the nonholonomic singularities
dim(Hq) = n` � ` : Further, dim(Vq) = n : So, when
` = n; dim(Hq � Vq) = (n`� `) + n = (n2 � n) + n =
n2 = dim(TqQ): It follows that Hq � Vq = TqQ:

To show property (2); consider Tq�g �Hq = g �Hq = g �
f(g

1
�
1
; : : : ; g

`
�
`
) j �

i
2 hg

def
= f(gg

1
�
1
; : : : ; gg

`
�
`
) j �

i
2

hg and Hg�q = fv 2 Tg�qQ j v = (g � q) �
(�

1
; : : : ; �

`
) and �

i
2 hg = f(gg

1
�
1
; : : : ; gg

`
�
`
) j �

i
2

hg : Then, obviously, Tq�g �Hq = Hg�q :

Property (3) is immediate from the smooth depen-
dence of A on the shape and from left{invariance.

3. Three{dimensional Lie Groups

Here we specialize the results of the previous section
to kinematic chains on Lie Groups with 3-dimensional
real non-abelian Lie algebras (n = 3): In section 3.1 we
consider the Special Euclidean group SE(2); in section
3.2 the Heisenberg group H(3); in section 3.3 the Spe-
cial Orthogonal group SO(3) and in section 3.4 the
Special Linear group SL(2):

We study 3{node, 2{module kinematic chains (` =
3 = n) on each of these groups by deriving their Wei{
Norman representation and by de�ning the partial
connection on the corresponding principal �ber bun-
dle.

Let G be one of the above four matrix Lie groups and G
be the corresponding Lie algebra. Consider the system
(8) on G with g

i
2 G and �

i
2 G; for i = 1; 2; 3: From

Proposition 1, any g
i
2 G has a local Wei{Norman

representation of the form (5). From the system kine-
matics (equation (9)) we have:
g
2
= g

1
g
1;2
; g

3
= g

2
g
2;3

= g
1
g
1;2
g
2;3
; g

1;3
= g

1;2
g
2;3
:

(23)
From (11) we get the corresponding velocity relations.
Assume that the evolution of system (8) on each copy
of G is constrained to lie on a 2{dimensional sub-
space h of G; where h is not a subalgebra of G: In [12]
the authors present a result showing that, for each of
H(3); SO(3) and SE(2); all 2{dimensional subspaces
h of G; which are not subalgebras, are equivalent un-
der Aut(G); the group of automorphisms of G; and
can be represented by h = spfA1;A2g in the basis of

G speci�ed in the following sections. For SL(2); there
are 2 classes of such equivalent subspaces that can be
represented, respectively, by h = spfA1;A2g and by
h = spfA3;A1 + A2g: Therefore, only nonholonomic
constraints corresponding to these subspaces of G will
be considered here.

De�ne �1 =
�
�1;2

>
�2;3

>�>
and �2 = �1: Observe

that, because ` = n; all shape variations appear in
the vector �1; whose choice (as well as the choice of
A1 and A2) is now unique. Proposition 5 holds with
� = (�2 �1): From Proposition 6 we conclude that
the global velocity of the 2{module kinematic chain,
as it is characterized by �

1
; can be expressed as a func-

tion of only the shape variables g
1;2
; g

2;3
and the shape

controls �
1;2
; �

2;3
of the assembly:

�2 = �A�12 (g
1;2
; g

2;3
)A1(g

1;2
; g

2;3
)�1 : (24)

From Theorem 8, equation (24) de�nes (away from the
singularities ofA2) a connection on the trivial principal
bundle (S �G;S; �;G); with S = G�G:

Our main purpose in this section is to set the stage for
a deeper understanding of this novel class of kinematic
chains, by cataloguing the low{dimensional possibili-
ties. One case, corresponding to SE(2) has already
found a concrete mechanical realization [7,8]. Oth-
ers might follow, for instance, there are possible con-
nections between SO(3){Snakes and the kinematics of
long chain molecules [5].

3.1. SE(2){Snakes

Let G = SE(2) be the Special Euclidean group of rigid
motions on the plane and G = se(2) be the correspond-
ing algebra with the following basis:

A1=

0
@ 0 �1 0
1 0 0
0 0 0

1
A;A2=

0
@0 0 1
0 0 0
0 0 0

1
A;A3=

0
@0 0 0
0 0 1
0 0 0

1
A:
(25)

Then:
[A1 ; A2] = A3 ; [A1 ; A3] = �A2 ; [A2 ; A3] = 0 :

(26)

The algebra se(2) is solvable and, from Proposition 1,
any g 2 SE(2) has a global Wei{Norman representa-
tion.

Figure 1: 2{module VGT assembly

From (26) we can see that there are two equiva-
lent 2{dimensional subspaces of se(2) that can gen-
erate the whole algebra under Lie bracketing, namely
h3 = spfA1;A2g = Ker(A[

3) and h2 = spfA1;A3g =



Ker(A[
2): Subsequently we will consider only h2 (which

is exactly the case of the system in �g. 1). The non-
holonomic constraints �

i
2 h2 can, then, be expressed

as A[
2(�i

) = 0; for i = 1; 2; 3: Equation (24) holds with:

A1 =

0
@ 0 0 0 0 0 0

0 1 0 0 0 0
�
2;33 cos 
2;31 sin 
2;31 0 1 0

1
A

and

A2 =

0
@ 0 1 0
�
1;23 cos 
1;21 sin 
1;21

�
1;33 cos 
1;31 sin 
1;31

1
A :

See [7,8] for the mechanical interpretation of the non-
holonomic singularities of this system. Away from
those, equation (24) speci�es the connection corre-
sponding to this system.

3.2. H(3){Snakes

Let G = H(3) be the Heisenberg group of real 3 � 3
upper triangular matrices with diagonal entries equal
to one and let G = h(3) be its algebra with the basis:

A1=

0
@ 0 1 0
0 0 0
0 0 0

1
A;A2=

0
@ 0 0 0
0 0 1
0 0 0

1
A;A3=

0
@ 0 0 1
0 0 0
0 0 0

1
A:
(27)

Then:
[A1 ; A2] = A3 ; [A1 ; A3] = 0 ; [A2 ; A3] = 0 :

(28)

The algebra h(3) is nilpotent (thus solvable) and, from
Proposition 1, any g 2 H(3) has a global Wei{Norman
representation.

From (28) we can see that there is only one possi-
ble 2{dimensional subspace of h(3) that can gener-
ate the whole algebra under Lie bracketing, namely
h = spfA1;A2g = Ker(A[

3): The nonholonomic con-
straints can, then, be expressed as A[

3(�i
) = 0; for

i = 1; 2; 3: Equation (24) holds with:

A1 =

0
@ 0 0 0 0 0 0

0 0 1 0 0 0

2;32 �
2;31 1 0 0 1

1
A

and

A2 =

0
@ 0 0 1

1;22 �
1;21 1

1;32 �
1;31 1

1
A :

3.3. SO(3){Snakes

Let G = SO(3) be the Special Orthogonal group of
real orthogonal 3� 3 matrices with determinant equal
to one and let G = so(3) be the algebra of 3 � 3 real
skew{symmetric matrices, with the following basis:

A1=

0
@0 0 0
0 0 �1
0 1 0

1
A;A2=

0
@ 0 0 1

0 0 0
�1 0 0

1
A;A3=

0
@0 �1 0
1 0 0
0 0 0

1
A:

(29)
Then:
[A1 ; A2] = A3 ; [A1 ; A3] = �A2 ; [A2 ; A3] = A1 :

(30)

The algebra so(3) is simple, thus, the corresponding
Wei{Norman representation is only local.

From (30) we can see that there are three equivalent
2{dimensional subspaces of so(3) that can generate
the whole algebra under Lie bracketing, namely h3 =
spfA1;A2g = Ker(A[

3); h2 = spfA1;A3g = Ker(A[
2)

and h1 = spfA2;A3g = Ker(A[
1): We consider only

h3 � G: The nonholonomic constraints �
i
2 h3 can,

then, be expressed as A[
3(�i

) = 0; for i = 1; 2; 3: Let

c

def
= cos 
 and s


def
= sin 
 Equation (24) holds with:

A1 =

0
@ 0 0 0 0 0 0

0 0 1 0 0 0
s
2;32 �s
2;31 c
2;32 c
2;31 c
2;32 0 0 1

1
A

and

A2=

0
@ 0 0 1
s
1;22 �s
1;21 c
1;22 c
1;21 c
1;22

s
1;32 �s
1;31 c
1;32 c
1;31 c
1;32

1
A:

3.4. SL(2){Snakes

Let G = SL(2) be the Special Linear group of real
2� 2 matrices with determinant one and let G = sl(2)
be the algebra of real 2 � 2 matrices of trace zero.
Consider the following basis for sl(2) :

A1 =

�
0 1
0 0

�
; A2 =

�
0 0
1 0

�
; A3 =

1

2

�
1 0
0 �1

�
:

(31)
Then:
[A1 ; A2] = 2A3; [A1 ; A3] = �A1; [A2 ; A3] = A2:

(32)

The Wei{Norman representation for this basis is only
local. (See however comments in [13] and their The-
orem 3. A global representation of SL(2) can be ob-
tained using fA1;A1 �A2;A3g as a basis of sl(2)).

De�ne A4
def
= A1 � A2 and consider the correspond-

ing element of G�; namely A[
4

def
= A[

1 � A[
2: From

(32) we can see that there are two non{equivalent
2{dimensional subspaces of sl(2) that can generate
the whole algebra under Lie bracketing, namely h3 =
spfA1;A2g = Ker(A[

3) and h1;2 = spfA3;A1 +A2g =
Ker(A[

4):

We will only consider h3 � G: The nonholonomic con-
straints �

i
2 h3 can, then, be expressed as A[

3(�i
) = 0;

for i = 1; 2; 3: Equation (24) holds with:

A1 =

0
@ 0 0 0

0 0 1
2
2;32 �2
2;31 (
2;31 
2;32 + 1) 2
2;31 
2;32 + 1

0 0 0
0 0 0
0 0 1

1
A

and

A2=

0
@ 0 0 1
2
1;22 �2
1;21 (
1;21 
1;22 + 1) 2
1;21 
1;22 + 1
2
1;32 �2
1;31 (
1;31 
1;32 + 1) 2
1;31 
1;32 + 1

1
A:

4. Motion Control

G{Snakes are highly redundant kinematic chains. As
a result, there are several possible actuation schemes
that implement a desired global motion of the system.
In the case of the 2{module SE(2){Snake (2{VGT),
we consider a simple such scheme, which relies on one
module (e.g. module f1; 2g) performing the \steering"
of the system, while the other (module f2; 3g) provides
the translation mechanism through periodic variations
of its shape. The shape controls in (24) are in this



case �1 =
�
�1;2

>
�2;3

>�>
: The �rst three are used for

steering and the rest for translating.

Proposition 9 Let the shape of the steering module
be �xed, i.e. �

1;2
= 0; while the shape of module f2; 3g

changes arbitrarily. Then, the instantaneous motion of
the 2{module SE(2){Snake is a rotation around the in-
tersection of the axes of platforms 1 and 2 (c.f. �g. 1).
If those axes are parallel, then the assembly instanta-
neously translates along the common perpendicular to
those axes.

Consider now a periodic variation of the shape con-
trols such that the shape g

2;3
of module f2; 3g traces

a closed curve in shape{space. It can be shown by
numerical integration and by computer simulations [7,
8] that this results in, not just an in{place oscillation
of the system, but to a net global motion of the as-
sembly. This motion is in agreement with Proposition
9. If we trace the shape{space curve in reverse, the
assembly will move backwards by the same amount.
This is associated with the concept of geometric phase
of the system, which is discussed in greater detail in
[6,10].

Once primitive motions (translations and rotations)
can be generated, those can be synthesized, using well
known motion planning (i.e. open loop) methods, to
solve problems like obstacle avoidance, motion along
constrained directions (\car parking" problem) and
motion in a con�ned environment (since the shape of
the assembly can be expanded and contracted at will).

Since the geometric picture is exactly the same in the
case of H(3), SO(3) or SL(2){Snakes, a similar ap-
proach will allow the solution of the motion planning
problem also in those cases.

5. Conclusions

In this paper we introduce the concept of G{Snakes,
which is a class of kinematic chains, with local non-
holonomic constraints on each node of the chain, evolv-
ing on a Lie group. Shape variations of the system
modules induce a snake{like global motion of the sys-
tem. We provide the framework upon which motion
planning strategies based on periodic shape variations
can be developed and we o�er a catalogue of low{
dimensional possibilities. A concrete mechanical re-
alization is associated with G = SE(2): The present
framework is applicable not only to nodes arranged in
a chain, but to more general tree or ring{like arrange-
ments (thus giving rise to G{Spiders and G{Rings).
This may be relevant to the more complicated node
arrangement in e.g. molecular structures. Kinematic
structures where the Codimension 1 Constraint Hy-
pothesis is relaxed, can also be analyzed using this
framework.

Further extensions of this work include the study of ge-
ometric phase for each of the groups that we discuss, as
well as the study of optimal control problems related
to the choice of shape variations that will achieve mo-
tion between two desired con�gurations. Considering
the e�ects of dynamics on the system is also a natural
extension for this study. We are currently in the pro-
cess of building a prototype 1{module SE(2){Snake,
which uses dynamic e�ects for locomotion.
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