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Abstract: The nonholonomic motion planning problem is considered for a novel
class of modular mobile manipulators, where each module is implemented as a planar
parallel manipulator with idler wheels. This assembly is actuated by shape changes
of its modules, which, under the influence of the nonholonomic constraints on the
wheels, induce a global snake—like motion of the assembly. The kinematics for a 2—
module assembly of this type are formulated and the corresponding motion planning

problem is studied.
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1. INTRODUCTION

In this paper, a class of Variable Geometry Truss
(VGT) assemblies is considered, which are struc-
tures consisting of longitudinal repetition of truss
modules. In the present instance, each module is
implemented as a planar parallel manipulator con-
sisting of two platforms connected by legs whose
lengths can vary under the control of linear ac-
tuators. Each platform is equipped with a pair
of wheels, so that it can move on the plane that
supports the structure (Fig. 1). The wheels of
each platform are free and not actuated and their
motion is independent of each other, while it is as-
sumed that the wheels roll without slipping on the
plane. This imposes a nonholonomic constraint on
the motion of each platform, namely the require-
ment that its velocity is perpendicular to the axis
connecting the wheels. When the legs of the in-
dividual modules are expanded or contracted, the
shape of the whole VGT assembly changes. As a
consequence of the nonholonomic constraints im-
posed by the rolling—without—slipping assumption
on the wheels, this shape change induces a global
motion of the VGT assembly.

The motion planning problem for such an assem-
bly is of the nonholonomic variety (Li and Canny
(1993); Murray et al. (1994)). The main charac-
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teristic of the system presented here is the promi-
nence of shape changes as the means which, to-
gether with the action of the nonholonomic con-
straints, induces global motion. This is analo-
gous to the idea of reorientation in free—floating
multibody systems, induced by closed joint space
trajectories under the nonholonomic constraint
of conservation of angular momentum (Krish-
naprasad (1990); Marsden et al. (1990)).

Fig. 1. One Module of the VGT assembly

VGT assemblies of the type discussed here have
been examined in the past (see (Chirikjian and
Burdick (1991)) and references there), but the em-
phasis was on its capabilities as a redundant ma-



nipulator and on locomotion using snake-like mo-
tions, not on the special problems introduced by
nonholonomic constraints. A system similar to the
one described here was built by (Chirikjian and
Burdick (1993)) using castors instead of wheels in
the platforms of the modules and therefore the
nonholonomic constraints that are considered here
were not present.

In section 2, the kinematics of a VGT assem-
bly with 2 modules are examined. Consider the
(7,7 + 1)-th module (Fig. 1): Its shape can be de-
scribed by the relative position and orientation of
a coordinate frame centered at the point O;11 with
respect to a coordinate frame centered at the point
O;. Then, the shape of each module corresponds to
an element of the Special Euclidean group SE(2)
that describes rigid motions on the plane and, as a
result, the shape of the 2-module VGT can be de-
scribed by 2 elements of SE(2). The configuration
of the whole VGT assembly can be described by
the shape of its 2 modules and by the position and
orientation of the assembly with respect to some
fixed (world) coordinate system, thus by a total
of 3 elements of SE(2). In section 2.1, the group
theoretical tools and notation used are introduced,
in particular the left—invariant dynamical system
that describes the evolution of curves in SE(2),
their Wei-Norman representation and the adjoint
action of SE(2) on its algebra. The shape of each
module is expressed, using the Wei-Norman rep-
resentation of SE(2), as a product of the one-
parameter subgroups of SE(2). Then, the config-
uration of the whole assembly can be expressed as
a product of such one—parameter subgroups. In
section 2.2, the kinematics of the 2-module VGT
are derived. Using the notion of the adjoint action
of SE(2) on its Lie algebra, it is possible to deter-
mine how the motion of a module relates to the
motion of the other modules of the assembly and
to express the nonholonomic constraints in a com-
pact form that will be used to make explicit the
dependence of the assembly configuration on the
shape of its modules. A basic result is presented
in Proposition 2.2.3, where it is shown that, be-
cause of the nonholonomic constraints, the veloc-
ity vector can be partitioned in two parts, one of
which constitutes the independent shape controls
and the other being velocities which characterize
the global motion of the assembly with respect
to the world coordinate system. Those latter de-
pend only on the shape of the assembly and the
shape controls. In this work, the implementation
of each module as a planar parallel manipulator
is considered. The shape of each module is de-
termined by the lengths of the legs of the parallel
manipulator. From the velocity kinematics of the
parallel manipulator it can be seen that motion
planning schemes for the VGT assembly can disre-
gard the particular details of the implementation

of the modules and only consider the shape of each
module. Thus, instead of considering the changes
in leg lengths as controls for the VGT assembly,
the corresponding shape controls of each module
can be used.

In section 3, the way shape changes induce a global
snake-like motion is demonstrated. The motion
planning problem is considered under a specific
shape actuation scheme, where one of the two
modules is responsible for the motion of the assem-
bly by periodic changes of its shape and the other
module is responsible for steering. It is shown
how to generate primitive “straight line motion”
and “turning” behaviors, which can be synthe-
sized into more complex ones, like avoidance of
obstacles.

In section 4, possible extensions of this work are
discussed.

It is found convenient to employ the language of
matrix Lie groups throughout, which leads to com-
pact notation and enables the immediate exten-
sion of those results to more complex VGT assem-
blies. For the sake of brevity most proofs are omit-
ted. The interested reader should consult (Krish-
naprasad and Tsakiris (1994b)).

2. KINEMATICS

2.1. The Components of the 2-Module VGT

The instantaneous shape of a module of the VGT
assembly, the position and orientation of each
platform of the assembly or the position and orien-
tation of the whole assembly with respect to the
world coordinate system correspond, as was dis-
cussed in section 1, to an element x of the matrix
Lie group G = SE(2). Given a curve x(.) C G =
SE(2), there is a curve V(.) C G = se(2), the Lie
algebra of SE(2), such that:

xX=xV. (1)

Let {A;, i =1,2,3} be the following basis of G :

{A17A27A3} =

0 -1 0 0 01 0 0 0
:{1 0 01},{0 O O0},[{0 O 1},
0 0 O 0 0 0 0 0 0
2

with [, | being the usual Lie bracket on G. Then:

[-’41 ) A2] :A37 [Al ) A3] = _A27

Ay, Ay =0, O



Let G* be the dual space of G, i.e. the space of
linear functions from G to IR. Let {42, i = 1,2,3}
be a basis of G* such that A%(A;) = 6{, fori,j =
1,2,3, where 6{ is the Kronecker symbol. Then
the curve V(.) C G can be represented as:

3 3
V= Z'Ui-Ai = ZA?(V)Ai : (4)
i=1 i=1

Here V; is a scalar function of ¢, the curve
)
parametrization.

Proposition 2.1.1. (Wei and Norman (1964)) Let
x(0) = I, the identity of G. There exists a global
representation of the solution x(.) C G = SE(2)
of (1) of the form:

x(t) = e (DAL g72(8) A2 o v3(2) As (5)

The coefficients v; € IR are related to the coeffi-
cients v; in (4) by:

;}/1 1 0 0 U1
’.}/2 = Y3 1 0 (%] . (6)
73 —Y2 0 1 U3

Equation (6) can be solved by quadratures.

For x € G, define the adjoint action of G on G
denoted Ad, : G — G by:

def

Ad,V = xVx L forVeg. (7)

From (4):

3 3
AdV =Y vidd A =y AI(V)Ad A - (8)
i=1 i=1

Proposition 2.1.2. Consider the Wei—-Norman rep-
resentation (5) of x. Then:

Ady—1 A1 = Ay — y3As + 72 As
AdX—l A2 = COSs ’)/1./42 —sin ’)/1./43 ) (9)
Adx—l Az = sin ’}/1./42 + cos ’}/1./43 .

Using (2) and (5):

cos¢p —sing w
X(t) — €V1A1 e”rzA2 673A3 — sin ¢ Ccos ¢ Yy,
0 0 1
(10)
where:
def :
T = 73 €087y — y3sivyg ,

Y def Y2 siny; + 3 cos , (11)

def
¢§71-

2.2. The 2-module VGT

Fig. 2. The 2-module VGT assembly

A chain of ¢ = 2 modules of the type shown in
Fig. 1 is considered (Fig. 2). This system has
n = 3({ +1) = 9 degrees—of-freedom, its con-
figuration space is @) = SE(2) x SE(2) x SE(2),
it is subject to 3¢ = 6 holonomic constraints
from the parallel manipulator legs and to p =
¢ +1 = 3 nonholonomic constraints from the
rolling—without—slipping wheel motion. The con-
figuration of the assembly can be determined by
its shape (which is an element of the shape space
S = SE(2) x SE(2)) and by the position and
orientation of the assembly with respect to the
world coordinate system (which is an element of

G =SE(2)). Then Q =G x S.

Consider a world coordinate system centered at
Op and platform coordinate systems centered at
O;, i=1,2,3.

Let x. € G = SE(2) be the configuration ma-
trix of the i-th platform with respect to the
world coordinate system. Let V; C G =
se(2) be the corresponding curve in equation (1).
Also define the vector o' = (vioivi)! =
(A5 (Vi) A5 (Vi) A5(Vi) )T Let X;; € G be the
configuration matrix of the j—th plétform with re-
spect to the coordinate system of the i—th plat-
form. This subsystem will be called the (i, j)—th
module. Let V; ; C G = se(2) be the correspond-
ing curve in (1) and let v*J be the vector of ele-
ments of V; ;.

The shape of the VGT assembly is determined by
{X1 2 Xy 3}. The velocities {Vi 2, V5 3} are called

shape controls for reasons to become obvious by
the end of this section.

Proposition 2.2.1. From the system kinematics:

Xy =X Xy 50
Xy = X2X2,3 - X1X1,2X2,3 ’ (12)
X13 - X1,2X2,3 ’



For the corresponding velocities:
Vo = Adx—1 Vi+Via,
1,2
Vs = Adx—l Vo+ Vo3
23 (13)

= Ady 1 Vi + Ady 1 Vip + Vo
1,3 2,3

Vig = Adx_1 Vig+Vas.
2,3

The p = 3 nonholonomic constraints of rolling—
without—slipping on the wheels of each platform
can be expressed, for i = 1,2, 3, as:

v; = AZ(Vz) =d;cos¢; +y;sing; =0. (14)

Proposition 2.2.2. The p = 3 nonholonomic con-
straints can be written in matrix form as:

Alx, X, Jv=10, (15)
ol

where v = | %2 | . The p x n matrix A is a
2,3
V2

function of only the shape variables X,y Xy of

the chain. It is a block lower triangular matrix of
maximal rank p = 3 of the form:

*171 0 0
A, X, ) = | %12 *22 O (16)
' ' *1,3 *2,3 *3.3

with the diagonal blocks x; ;, for i = 1,2, 3, defined
as %;; = (010) and the off-diagonal blocks %; j,
fori <j, i =1,2 and j = 2,3, defined as:

wij = (Ag(AdXi—; Ar) AZ(Adxi—;_fb)
AZ(AdXTI.A:") >
2y

_ L o i il
= (=757 cosyy? siny? ),

where 'y,i’j are the Wei-Norman parameters of the
configuration of the (i, j)—th module that were in-
troduced in Proposition 2.1.1.

The null space N (A) has always dimension m def
n — p = 6. Thus, from equation (15) it is possible
to show:

Proposition 2.2.3. The (global) velocity of the 2—-
module VGT assembly with respect to the world
coordinate system, as it is characterized by v!,
can be expressed as a function of only the shape
variables of the assembly:

_ b2
o= =70, i, ) (s ) 0D

by partitioning A as (4; A2) with

0 0
Alx, )= | *22 0 (18)
' *2,3  *3,3

and a locally invertible p X p matrix
*1,1

) = *172 . (19)
*1,3

A2(X1 2’X23

Notice that, since A depends only on the shape, so
does A,. As the shape of the assembly changes, A
may become singular. The corresponding config-
urations of the VGT assembly shall be referred
to as momholonomic singularities. It is easy to
see that the matrix A, is singular whenever the
axes of all three platforms intersect at the same
point or are parallel. However, even in this case,
the 3 nonholonomic constraints remain indepen-
dent (c.f. equation (15), where rank(4) = 3),
but, since the platforms have a common instanta-
neous center of rotation, equation (15) cannot be
recast in the form of (17). Therefore, the system’s
motion cannot be controlled by the shape controls
alone and the dynamics of the system ought to be
considered. This is analogous to what practising
engineers refer to as loss of control authority.

Unlike previous work on nonholonomic motion
planning, in this case the shape controls in equa-
tion (17) do not correspond directly to the controls
of the system and, thus, are not at the disposal of
the designer to alter at will. The real controls
are the leg velocities ¢ of the parallel manipulator
modules. However, off the kinematic singularities
of the parallel manipulators, the shape controls
can easily determine the corresponding leg veloci-
ties (Krishnaprasad and Tsakiris (1994b)). There-
fore, in order to simplify the discussion of motion
planning, the particulars of the implementation of
the modules will be disregarded and only actua-
tion under the shape controls will be considered.

From X =x Vi and the properties (3) of the ba-
sis {A;} of G, it is easy to see that, away from the
nonholonomic singularities, controllability is guar-
anteed for a generic set of shape controls whenever
the 1st and 3rd rows of the matrix A;'A; are
linearly independent. However, the latter always
holds away from the nonholonomic singularities.

3. MOTION PLANNING

In this section, the motion planning problem for
the 2-module VGT assembly is examined. There
are several possible actuation strategies for this
system. A simple one will be considered here,
where the first module (module—(1,2)) “steers”
the system, while the second (module—(2,3)) pro-
vides the translation mechanism through periodic



variations of its shape parameters. More specif-
ically, the special case of motions that are gen-
erated by keeping the shape of the first module
fixed, i.e. v"? = 0, and vary the shape controls
v%3 of the second module periodically will be con-
sidered. As can be seen from (17), the global mo-
tion of the system is determined completely, at
least away from the nonholonomic singularities,
by those two sets of shape controls.

A qualitative description of this motion is given by
the following result:

Proposition 3.1. i) If v1? =0 and 711’2 =0, the
2-module VGT instantaneously translates along
an axis perpendicular to platforms 1 and 2.

ii) If v12 = 0 and 7, # 0, the 2-module VGT
instantaneously rotates around the intersection of
the axes of platforms 1 and 2.

A quantitative description of the system’s motion
will be provided next, under a set of shape controls
where v!'? = 0 and where v*3 is the following
periodic control:

2,3
v = aqrwcoswt
2,3 . 2,3
vy"” = apwsinwt cos ;" , (20)
2,3 _ : s 2.3
03" = —ow sin wt siny;

As can be seen by (6) and (11), this v*? forces
the shape of the module—(2,3) to trace a closed
elliptical path in (z2 3, ¢2,3)-space.

In Proposition 3.1 it was shown that the instan-
taneous global motion of the VGT assembly in-
duced by those shape controls, as characterized
by the position and orlentatlon ~% of platform 1,
is a translatlon whenever 71 = 0 or a rotation
whenever 71 ? £ 0. The question is whether, after

a period T = 27” of the shape controls, there is

a net motion Ayt € 41(T) — 41(0) of the VGT
assembly which would correspond to the “stride
length” of the motion induced by those shape con-
trols. This is equivalent to the geometric phase
idea of (Krishnaprasad (1990)).

3.1. Translation

Let 7> = ~,°2(0) = 0. In Proposition 3.1 it was
shown that the instantaneous motion of the 2-
module VGT in this case is a translation along the
perpendicular to platforms 1 and 2. The position
of the assembly on this axis can be characterized
by the parameter vi. From (17):

t
AvL(t) =2 = [ s
0
t
si
= az/ W wT dr .
, tan(y;""(0) + ay sinwr)

(21)

Using Mathematica, equation (21) can be inte-
grated numerically and it can be verified that after
a period of the shape controls, the 2-module VGT
assembly has moved forward by a distance speci-

fied by Ayz(2F) = v3(%) — 25(0) (Fig. 3).

Gamma®1_3 by numerical integration

40

20

-20

Fig. 3. Geometric phase of translating 2-VGT

3.2. Rotation

Let 7,2 = ~,2(0) # 0. In Proposition 3.1 it was
shown that the instantaneous motion of the 2-
module VGT in this case is a rotation around the
intersection of the axes of platforms 1 and 2. The
position of the assembly with respect to this point
can be characterized by the angle v{. From (17):

A%@=ﬁ@—ﬁ®=/ﬁmm

0

= —sin /t v§’3(7) dr .
= —siny det(As (1))
0

Using Mathematica, equation (22) can be inte-
grated numerically and it can be verified that
for e.g. 711’2 = -7, after a period of the
shape controls, the 2-module VGT assembly ro-
tates clockwise around the intersection of the first
module platforms’ axes by an angle specified by

Ay (3E) =41 (35) — 71 (0).

If the closed shape—space path described by equa-
tion (20) is traced in the reverse direction, the as-
sembly will translate backwards by the same dis-
tance or will rotate counter—clockwise by the same
angle.



The nonholonomic kinematics of the 2-module
VGT were simulated on a Silicon Graphics Indigo
2 graphics workstation. As can be seen from Fig.
3, during a period of the shape controls the 2—
VGT assembly first moves “backwards” and then
“forward”. This gives the impression of a snake—
like motion. The primitive straight line and rota-
tional motions described above can be synthesized
to display more complex behaviors of the system,
like obstacle avoidance.

4. CONCLUSIONS

In this paper, Variable Geometry Truss assem-
blies with nonholonomic constraints were intro-
duced. Their kinematics were derived and mo-
tion planning was examined by showing how pe-
riodic shape changes induce global translation or
rotation of the assembly under the influence of
the nonholonomic constraints. This discussion can
be extended to VGT assemblies of /—modules for
¢ > 2 and to non-serial tree-like module arrange-
ments. It is noteworthy that the nonholonomic
kinematics of those assemblies can be analyzed by
a straightforward application of the tools intro-
duced here (Krishnaprasad and Tsakiris (1994b)).

The framework discussed here is an instance of a
class of nonholonomic systems referred to as G-
snakes. Those are nonholonomic kinematic chains
evolving on a Lie group G. The configuration and
shape spaces of the chain form a G—bundle, while
the nonholonomic constraints specify a connection
on it (this generalizes Proposition 2.2.3). The con-
nection gives rise to a holonomy whenever shape—
space loops are traversed. Details appear in (Kr-
ishnaprasad and Tsakiris (1994a)).
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