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Abstract— Pursuit strategies can lead to cohesive behavior.
This idea is explored via consideration of a two-particle mutual
pursuit system based on motion camouflage as the underlying
strategy. Such a two-particle system can be thought of as a
model of a pair of cooperative unmanned aerial vehicles, and
in a limiting case as a model of a vehicle in the vicinity of a
signal source (beacon). Drawing on reductions by symmetry
and associated phase space properties, we show how this
particular instance of cyclic pursuit can be exploited to achieve
observational requirements such as coverage over physical
space.

I. INTRODUCTION

In observations of nature and in the conduct of human

affairs, including competitive sports and warfare, pursuit

and evasion phenomena have played a prominent role [1].

Studies of prey capture by echolocating bats [2], and aerial

territorial battles among insects [3] [4], indicate that an

approximate geometric regularity known as motion cam-

ouflage with respect to infinity (or constant absolute target

direction strategy) is prevalent in the flight behavior of the

species involved. It has been suggested that, at least in the

case of visual insects such as hoverflies and dragonflies,

for reasons of stealth, a pursuer seeks to appear stationary

relative to a familiar background feature in the visual field

of a target. When the background feature is distant, motion

camouflage with respect to infinity would then hold. In these

contexts, motion camouflage specifies a submanifold in the

joint state space of predator and prey (or pursuer and target of

pursuit) that constrains the motion. In [5] a control-theoretic

treatment of this phenomenon was initiated, with a focus

on planar models. Later papers discuss three-dimensional

models and associated feedback laws, as well as questions

of competition between various alternative pursuit strategies

(see [6] and references therein).

The approach in the current paper as well as in the earlier

cited papers is based on interacting particle models of agents

in pursuit and evasion. However, here we let a pair of agents

cooperate and engage in a form of mutual pursuit, governed

by motion camouflage feedback laws, leading to an oscillator

system with an interesting Hamiltonian structure (explained

in [7]). A motivating problem in this paper is the use of such
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a cooperative system in a task of comprehensive aerial obser-

vation of a region of interest by one or more unmanned aerial

vehicles (UAVs). Mutual motion camouflage as a building

block for coherent structures (flocks, swarms, schools) is an

instance of cyclic pursuit [8] [9] [10], and the exploration of

the geometry of this two-particle system is a natural step to

further understanding and exploitation in problems such as

coverage (see also [11]).

We begin by briefly describing the mutual interaction

model in the plane (section II), including reduction by

symmetry. Section III is devoted to the limiting case in which

one of the particles is stationary, here called the beacon.

The motion camouflage feedback law, and a modification of

the same to include dissipation, are presented. Section IV

discusses the exploitation of these ideas in coverage path

planning. The case of two mobile agents, which leads to

somewhat more complicated coverage issues, is considered

in section V.

II. MODELING MUTUAL INTERACTIONS

As in Justh-Krishnaprasad [5] [12], we model each agent

as a unit-mass particle moving along twice-differentiable

curves in R
2. The motion of the i-th agent is described

by its natural Frenet frame [13], defined by position ri and

orthonormal vectors xi,yi, where xi is tangent to the curve

traced by the particle, and yi = xi
⊥. Each agent is subject

to a gyroscopic curvature (steering) control, denoted by ui,

which has the property of preserving the speed of motion

νi. This is appropriate, for example, for the need of UAVs

to maintain a certain airspeed in order to remain aloft. The

equations of motion are, for i = 1, 2:

ṙi = νi xi

ẋi = νi ui yi

ẏi = −νi ui xi.
(1)

We focus attention on mutual interactions between two

agents, corresponding to the concept that each agent applies

the same control strategy based on the observed state of the

other. To account for the possibility that ν1 6= ν2, we define

as mutual gyroscopic interactions those which satisfy:

u1 ν1 = u2 ν2 = u. (2)

When (2) holds, u has a gyroscopic effect on the relative

motion vectors (r = r1 − r2, g =ν1 x1−ν2 x2, h = g⊥)

as well as on their (scaled) center of mass counterparts

(z = r1 + r2, k =ν1 x1+ν2 x2, l = k⊥) according to:

ṙ = g

ġ = u h

ḣ = −u g

(3)
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ż = k

k̇ = u l

l̇ = −u k

(4)

As a result, mutual interactions have the special property

of preserving the magnitude |g| = |h| = δ of the relative

velocity vector and the magnitude |k| = |l| = θ of the center

of mass velocity vector.

We additionally require the curvature control u to de-

pend only on the relative position and orientation between

the particles, i.e. to be SE(2)-invariant (with respect to

translations and rotations of the absolute reference frame).

Control laws of this kind have the advantage that they can

be implemented using only local sensing. We introduce the

following shape variables, containing information on the

shape of the formation composed by the two agents: ρ =
|r| = (r · r)1/2, γ = (1/ |r|) (r · g) and λ = (1/ |r|) (r · h).
The corresponding shape dynamics are:

ρ̇ = γ

γ̇ = (δ2 − γ2)/ρ + u λ (5)

λ̇ = −γ λ/ρ − u γ.

All the control laws discussed in the following sections are

of the form u = u(ρ, γ, λ), hence automatically satisfying

the SE(2)-invariance property. The system (5) is a reduction

of (3) since γ2 + λ2 = δ2 = constant.
Letting ζ = |z| = (z · z)1/2, ξ = (1/ |z|) (z · k) and η =

(1/ |z|) (z · l), we obtain:

ζ̇ = ξ

ξ̇ = (θ2 − ξ2)/ζ + u η (6)

η̇ = −ξ η/ζ − u ξ.

The system (6) is a reduction of (4) since ξ2 + η2 =
θ2 = constant. We showed in [7] that in case of motion

camouflage control, the trajectories of the agents can be

reconstructed from those of the reduced variables ρ, γ, λ,

ζ, ξ, η; the same is also true for the other control laws

introduced in this paper.

The model presented is suitable to describe gyroscopic,

SE(2)-invariant mutual interactions between two agents, for

any values of their (constant) speeds νi, i = 1, 2. Even as the

speed of one of the agents tends to zero (e.g. ν2 → 0), and its

curvature control grows unbounded (u2 → ∞), the equations

(1) are still well-defined since ui and νi always multiply

each other. As a limiting case, the model also captures the

dynamics of a single mobile agent moving in the vicinity of

a fixed beacon (signal source). Assume that ν2 = 0; then

g =ν1 x1 and h =ν1 y1 involve only the dynamics of the

moving agent, but equations (3), reducible to (5), still apply.

In this limiting case there is one-sided interaction since the

beacon need not to be an agent itself, but can be for example

a natural or artificial landmark of interest which the moving

agent uses as a reference for its motion or surveillance.

The “beacon case” is of interest in applications and as a

motivating problem setting, and will be discussed first below.

In this setting, the center of mass motion is merely a scaled

version of the relative motion.

III. BEACON AND MOTION CAMOUFLAGE

A. Motion Camouflage

The Motion Camouflage (MC) curvature control law takes

the form:

u = −(µ/ |r|)
(

r · ṙ⊥
)

= −(µ/ |r|) (r · h) = −µ λ, (7)

where µ is a non-negative constant gain. When λ = 0 we

say that the system is in a state of Motion Camouflage.

In [5], (7) was introduced as a high-gain pursuit law which

executes the motion camouflage, or Constant Absolute Target

Direction (CATD), strategy displayed by certain animal

species in pursuing their targets [2], [3]. Here we study (7)

as a law to generate trajectories around a beacon with useful

coverage properties. To this end, we drop the requirement

for µ to be a high-gain, leaving it instead as a free design

parameter. Substituting (7) into (5) yields the closed-loop

dynamics:

ρ̇ = γ

γ̇ = (1/ρ − µ) (δ2 − γ2) (8)

λ̇ = (µ − 1/ρ) λ γ.

Equations (8) have been studied in [7], in the context of

Mutual Motion Camouflage (for two agents); we recall

without proof the relevant results and apply them to the

problem at hand.

Theorem 1: Let (ρ(0), γ(0), λ(0)) = (ρ0, γ0, λ0) be ini-

tial conditions for (8) which satisfy: ρ0 > 0, −δ ≤ γ0 ≤ δ
and λ2

0 + γ2
0 = δ2. Note that δ = ν, the speed of the moving

agent. Then the dynamics (8) fall into one of the following

cases:

(a) If (ρ0, γ0, λ0) = (1/µ, 0,±δ) then (ρ(t), γ(t), λ(t)) =
(ρ0, γ0, λ0)∀t ≥ 0. These initial conditions correspond to

equilibria of (8). The resulting motion of the agent is to

follow circular orbits of radius 1/µ around the beacon.

(b) If γ0 = −δ, then (ρ(t), γ(t), λ(t)) = (ρ0−δt,−δ, 0)∀t ∈
[0, ρ0/δ). These initial conditions fall into the motion cam-

ouflage pursuit manifold (see [6]); the moving agent is in

motion camouflage with respect to the beacon, and remains

in such state till time ρ0/δ when it actually collides with the

beacon.

(c) If γ0 = δ, then (ρ(t), γ(t), λ(t)) = (ρ0 + δ t, δ, 0)∀t ≥ 0.

These initial conditions fall into the escape motion cam-

ouflage manifold [6], in which the agent recedes from the

beacon while remaining “motion camouflaged” from it.

(d) If (ρ0, γ0, λ0) 6= (1/µ, 0,±δ) and γ0 6= ±δ, then

(ρ(t), γ(t), λ(t)) follows a periodic orbit which:

- corresponds to a level set of the “energy” function:

E(ρ, γ) = ρ2 (δ2 − γ2) e−2µρ, (9)

- has period:

T = 2

∫ ρmax

ρmin

dρ/
√

δ2 − E(ρ0, γ0) e2µρ/ρ2, (10)
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Fig. 1. Phase portrait of (8) when µ = 0.1, δ =
√

2

where ρmin and ρmax are the two positive solutions of:

ρ2 δ2 e−2µρ = E(ρ0, γ0), (11)

- satisfies: λ(t) = λ0 ρ0 eµ(ρ(t)−ρ0)/ρ(t), ∀t ≥ 0.

Except in the special case in which the initial conditions

fall in one of cases (a)-(c), we see that the agent orbits around

the beacon with distance oscillating between a minimum

(strictly positive) value ρmin and a maximum value ρmax.

We also proved in [7] that if we express the relative

position r of the agent with respect to the beacon in polar co-

ordinates (|r| , αr), then to every period T of the magnitude

ρ corresponds a phase shift:

αr(t + T ) − αr(t) = λ0 ρ0 e−µρ0 (eµρ/ρ2)avg, (12)

where (·)avg stands for the average over one period. The

phase shift is non-zero since eµρ/ρ2 is a strictly positive

function and λ0, ρ0 6= 0 if the initial conditions fall in case

(d) of Theorem 1. Therefore the evolution of r(t) is not T -

periodic, and if the right hand side of (12) is not a rational

multiple of 2π the agent will fill with time the annular region

centered at the beacon and having inner radius ρmin and

outer radius ρmax. Motion Camouflage can hence be used

to generate region-filling trajectories centered at the beacon.

The values of ρmin > 0, important for collision avoidance,

and ρmax, which is important if the moving agent must

maintain connectivity (visual, radar, etc.) with the beacon,

are determined by the values of µ and E. The latter depends

on µ but essentially on the initial conditions; hence ρmin and

ρmax cannot be chosen at will by changing µ.

Figures 1 and 2 show representative orbits in the (ρ, γ)-
space for different initial conditions and different values of

µ respectively. Note in Figure 2 that as µ is increased, the

trajectories of the moving agent approach closely the motion

camouflage manifolds and ρmin → 0; this is consistent with

the use of (7) with high-gain as a way to execute the mutual

camouflage pursuit strategy.

Remark 1: The Motion Camouflage control law (7) can

alternatively be used to achieve abrupt “escape” of the

moving agent from the beacon, by using a negative gain

µ. Notice in fact from (8) that if µ < 0 then ρ̈ = γ̇ >
0 ∀t ≥ 0, hence ρ(t) → ∞, γ(t) → δ. In this case the agent
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recedes from the beacon along the escape motion camouflage

manifold.

B. Motion Camouflage with stabilization to a desired orbit

Motion Camouflage alone does not provide enough de-

grees of freedom to satisfy simultaneously collision avoid-

ance and connectivity requirements; moreover the orbits it

produces are not orbitally asymptotically stable and hence

not robust to disturbances. Both limitations can be overcome

by adding an additional control term to (7), which “adjusts”

the energy to the value Ed corresponding to a desired orbit,

making it orbitally asymptotically stable.

Theorem 2: Let Ed be a desired value of energy, chosen

within the limits of the function (9): 0 < Ed ≤ δ2 e−2/µ2.

Then the control law:

u = uMC + uADJ = −µ λ + kd λ γ (E(ρ, γ) − Ed), (13)

with kd > 0 and E(ρ, γ) as in (9), makes the pe-

riodic orbit of Motion Camouflage with energy Ed or-

bitally asymptotically stable with region of attraction

{(ρ, γ, λ) : ρ > 0,−δ < γ < δ, (ρ, γ, λ) 6= (1/µ, 0,±δ)}.

Proof: If E(ρ, γ) = Ed, the control law (13) is identical

to (7). Hence we still have that the periodic orbit of MC with

energy Ed is an invariant manifold. On the other hand all

the other periodic orbits of MC (those with E(ρ, γ) 6= Ed)

are not invariant because of the effect of the term uADJ .

The equilibria and motion camouflage invariant manifolds

described in Theorem 1 still exist, hence they are excluded

from the region of attraction of any other orbit. For all the

other initial conditions, we need to prove that the distance

between the corresponding integral curves and the periodic

orbit with energy Ed converges to 0. Since E is a continuous

function of ρ, γ, it suffices to prove that (E(ρ, γ)−Ed)2 → 0:

d

dt
(E(ρ, γ) − Ed)

2 = −K(ρ, γ) (E(ρ, γ) − Ed)
2,

where K(ρ, γ) = 4 kd(δ
2 − γ2)ρ2γ2e−2µρ ≥ 0 ∀(ρ, γ).

If the state of the system is outside of equlibria and motion

camouflage manifolds, it must fall into either one of the

following cases:
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1) γ 6= 0 ⇒ K(ρ, γ) > 0 ⇒ d(E(ρ, γ) − Ed)
2/dt < 0

and the distance between the current value of energy

and the desired one decreases

2) γ = 0 ⇒ K(ρ, γ) = 0 ⇒ d(E(ρ, γ) − Ed)
2/dt =

0 but u = uMC hence the (ρ, γ)-trajectory follows

momentarily the MC periodic orbit associated to the

current value of energy, which quickly leads to γ 6= 0
and hence to case 1.

This proves that for any initial condition in

{(ρ, γ, λ) : ρ > 0,−δ < γ < δ, (ρ, γ, λ) 6= (1/µ, 0,±δ)},

the distance between the actual energy and the desired one

decreases monotonically to 0 i.e. all these initial conditions

are attracted by the periodic orbit having energy Ed.

The choice of Ed, together with that of µ, allows us to shape

the orbits of the agent. In particular the distance between

the agent and the beacon at steady state will periodically

oscillate between minimum and maximum values given by

the two positive solutions to:

ρ2 δ2 e−2µρ = Ed. (14)

Remark 2: The control law (13) can also be used to obtain

stable circular motion of the agent around the beacon. If in

fact we choose Ed = Emax = δ2e−2/µ2, this desired energy

corresponds to one of the equilibria (ρ, γ, λ) = (1/µ, 0,±δ)
of the reduced dynamics. These equilibria are associated

with circular orbits of radius 1/µ centered at the beacon.

An alternative, and simpler, control law that achieves stable

circular motion is:

u = −µ λ − keq γ λ2k−1, (15)

with k a positive integer and keq > 0.

IV. COVERAGE PATH-PLANNING

The modified MC control law (13) provides a way of de-

signing stable trajectories that can be used to solve coverage

path-planning problems as in the following.

Coverage Problem 1: Determine a suitable trajectory for a

mobile agent moving at constant speed so that it fully covers

an annular region of desired inner radius ρb,min and desired

outer radius ρb,max, centered at a beacon.

A coverage problem of this type could arise for example

if the agent must explore (cover) the area surrounding a

landmark of interest (beacon) on the basis of local sensing

only. The quantity ρb,max accounts for limited range of

sensing, and ρb,min accounts for safety distance to avoid

collisions.

Proposition 1: Coverage Problem 1 can be solved by an

agent applying the modified Motion Camouflage control law

(13) with parameters:

µ =
ln(ρb,max/ρb,min)

ρb,max − ρb,min
, Ed = ρ2

b,minδ2e−2µρb,min (16)

where δ = ν, the (constant) speed of the agent.

Proof: We know from section III-B that, after a tran-

sient, the trajectories of the agent will converge to the energy

level set Ed, and will cover the annular region centered at
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Fig. 3. Solution to Coverage Problem 1 with the modified MC control
law (13). The agent starts at position [10,14] and has speed ν = 2. By
choosing parameters µ = 0.1792, Ed = 7.8137 as prescribed by (16), and
Kd = 0.2, the agent begins filling the annular region with desired radii
ρb,min = 2, ρb,max = 12.

the beacon and having inner and outer radius given by the

solutions to (14). By inspection, one of the solutions when

Ed is given by (16) is certainly ρb,min. Express now the

other (unknown) solution as K ρb,min, i.e. define K as the

unknown ratio between the solutions. Since K ρb,min must

also satisfy (14), we obtain K2e−2µKρb,min = e−2µρb,min ,

which when solved for K with µ given by (16), yields exactly

K = ρb,max/ρb,min.

Remark 3: Proposition 1 holds provided that the initial

conditions of the agent (at the moment of activation of (13))

are not in one of cases (a)-(c) of Theorem 1.

Figure 3 shows the results of a simulation in which Coverage

Problem 1 is successfully solved by means of the modified

Motion Camouflage control law (13).

V. TWO MOBILE AGENTS

After discussing the simpler case of one agent moving

about a beacon, we are now ready to consider the more

general case of mutual interaction between two agents. The

main difference with the beacon case is that now the motion

of the agents must be reconstructed not only from their

relative motion but also from the non-trivial motion of the

center of mass, as determined by the choice of the control

law. The reduced center of mass motion equations (6) are

coupled to (5) by u = u(ρ, γ, λ); we consider the same

control laws studied for the beacon case, but in the context

of mutual interactions.

A. Mutual Motion Camouflage

We define as Mutual Motion Camouflage (MMC) the case

in which two agents mutually interact (i.e. their curvature

controls satisfy (2)) with the common control law being

given by (7). The relative motion between the agents is

governed by the same equations (8) studied in section III-A

for the beacon case; hence by appeal to those results we can

conclude that the relative distance between the agents will
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periodically oscillate between a minimum value ρmin and a

maximum value ρmax, which depend on the choice of µ and

the initial conditions. One difference with the beacon case

is that the parameter δ = |g| here genuinely depends on the

initial conditions, in particular initial headings of the agents,

whereas in the beacon case it is simply equal to the speed

of the mobile agent.

The reconstruction, from the relative motion, of center

of mass motion and individual trajectories of the agents is

explained in detail for the MMC case in [7]. Here we just

recall the main results with a sketch of the proof, with the

aim of solving the coverage problem.

Theorem 3: Let r1(0), r2(0), x1(0) and x2(0) be the

initial positions and headings for the two agents, with

respect to an arbitrary absolute reference frame. Assume

that r1(0) 6= r2(0) and ν1 x1(0) 6= ±ν2 x2(0), i.e. the

agents have some initial spatial separation and their initial

velocity vectors are neither identical nor opposite. Denote as

r̃1 = r1 − z0/2 and r̃2 = r2 − z0/2 the positions of the

agents with respect to an absolute reference frame which is

translated by z0/2 from the original one, where:

z0 = z(0) − σ2

[

kT (0)
lT (0)

]−1 [
r(0) · g(0)
r(0) · h(0)

]

. (17)

Then the evolution in time of r̃1 and r̃2 is given in polar

coordinates by:

|r̃1(t)| = K1 ρ(t) (18)

|r̃2(t)| = K2 ρ(t) (19)

αr̃1(t) = tan−1

(

(a + 1) sin αr(t) + b cosαr(t)

(a + 1) cosαr(t) − b sinαr(t)

)

(20)

αr̃2(t) = tan−1

(

(a − 1) sin αr(t) + b sinαr(t)

(a − 1) cosαr(t) − b sinαr(t)

)

(21)

where:

K1 =
√

σ2 + 1 + 2σ cos(αz̃(0) − αr(0))/2,

K2 =
√

σ2 + 1 − 2σ cos(αz̃(0) − αr(0))/2,

a = σ cos(αz̃(0) − αr(0)),
b = σ sin(−αz̃(0) + αr(0))
are constants which depend on the initial conditions, and αz̃,

αr are the polar angle coordinates of z̃ = r̃1 + r̃2 and r.

Sketch of the proof:

1) Equations (5) and (6), are invariant to arbitrary trans-

lations of the absolute reference frame; i.e. they still

hold for a set of new variables ρ̃, γ̃, λ̃, ζ̃ , ξ̃, η̃, defined

with respect to a translated absolute reference frame.

Note that ρ̃ = ρ, γ̃ = γ, λ̃ = λ since these are variables

based on relative motion. Hence for any u = u(ρ, γ, λ)
the closed loop equations will also be invariant to

translations of the absolute reference frame.

2) If we substitute the MC control law (7) in (5)-(6), then

the closed loop system has an invariant manifold Mσ =
{(ρ, γ, λ, ζ̃, ξ̃, η̃) : ζ̃ = σ ρ, ξ̃ = σ γ, η̃ = σ λ}.

3) There exists a (unique) translation z0/2 of the absolute

reference frame, computed as in (17), which makes the

initial conditions fall exactly on the invariant manifold

Mσ. Hence with respect to this translated frame we

have ζ̃(t) = σ ρ(t), ξ̃(t) = σ γ(t), η̃(t) = σ λ(t) ∀t ≥
0, where σ = θ/δ.

4) From ρ, γ, λ, ζ̃, ξ̃, η̃ it is possible to reconstruct the

evolution in polar coordinates of vectors r and z̃.

5) Finally (18)-(21) are obtained by expressing r̃1 = (z̃+
r)/2 and r̃2 = (z̃−r)/2 in polar coordinates, and using

the fact that α̇z̃(t) = ξ̃(t)/ζ̃(t) = λ(t)/ρ(t) = α̇r(t),
which is a property of (5)-(6) (independently from the

choice of the control law).

From Theorem 3, and the fact that r(t) covers the annular

region with inner radius ρmin and outer radius ρmax, we

have that the agents cover annular regions, centered at

z0/2 and having radii (K1 ρmin, K1 ρmax) for agent 1 and

(K2 ρmin, K2 ρmax) for agent 2.

The dynamics of Mutual Motion Camouflage leads to

interesting trajectories with region-filling properties, useful

for coverage path-planning applications. As in the beacon

case, it is more convenient to make each agent use the

modified MC control law with stabilization to a desired

periodic orbit (described in section III-B). The advantages

are orbital asymptotic stability and an additional degree of

freedom (Ed) as explained below.

B. Mutual Motion Camouflage with stabilization to a desired

orbit

Consider now the case in which both agents, mutually

interacting according to (2), apply the modified MC control

law (13). The resulting relative motion is the same as

described in section III-B for the beacon case: independent of

the initial conditions, the relative motion between the agents

will converge to a value of energy equal to Ed. After a

transient, the distance between the agents will periodically

oscillate between minimum and maximum values given by

the two positive solutions to (14). In order to determine the

actual trajectories of the agents, we would need in general

to derive the center of mass motion and combine it with the

relative motion (which is what we did in [7] for the MMC

case); nonetheless because of the form of the control law

(13), which is equal to MC with an additional term, also

SE(2)-invariant, the results of Theorem 3 apply in this case.

Proposition 2: The statement of Theorem 3 is still appli-

cable in the case of mutual interaction between two mobile

agents with curvature control (13).

Proof: The first step of the proof of Theorem 3

still applies since (13) is of the form u = u(ρ, γ, λ).
We must further prove that the invariant manifold Mσ =
{(ρ, γ, λ, ζ̃, ξ̃, η̃) : ζ̃ = σ ρ, ξ̃ = σ γ, η̃ = σ λ} still exists

when we substitute (13) (as opposed to (7)) in (5)-(6).

The resulting closed loop system is:

ρ̇ = γ

γ̇ = (1/ρ − µ) (δ2 − γ2) + γ̇extra

λ̇ = −(1/ρ − µ)λ γ + λ̇extra (22)
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˙̃
ζ = ξ̃
˙̃
ξ = (θ2 − ξ̃2)/ζ̃ − µ λ η̃ +

˙̃
ξextra

˙̃η = −ξ̃ η̃/ζ̃ + µ λ ξ̃ + ˙̃ηextra,

where γ̇extra = kd γ (δ2 − γ2)(E(ρ, γ) − Ed), λ̇extra =

−kdγ2λ(E(ρ, γ)−Ed),
˙̃
ξextra = kdγλη̃ (E(ρ, γ)−Ed) and

˙̃ηextra = −kd γ λ ξ̃ (E(ρ, γ) − Ed). Aside from the ‘extra’

terms, the closed loop system (22) is identical to that of

MMC. It is a simple exercise to prove that
˙̃
ξextra−σγ̇extra =

˙̃ηextra − σ λ̇extra = 0 when (ζ̃ , ξ̃, η̃) = σ (ρ, γ, λ), and

therefore the invariant manifold Mσ of MMC is preserved.

The remaining steps of the proof of Theorem 3 follow

without complications since they do not depend on the choice

of the control law.

Even in this case the agents will cover (at steady

state) annular regions centered at z0/2 and having radii

(K1 ρmin, K1 ρmax) and (K2 ρmin, K2 ρmax) respectively.

The values of ρmin, ρmax are fixed by the choice of µ and

Ed, independently from the initial conditions, and this can

be exploited to achieve certain coverage tasks.

Remark 4: If we choose Ed = Emax = δ2e−2/µ2,

the energy value corresponding to equilibria of the relative

motion equations, the trajectories of the agents at steady state

are circular orbits centered at z0/2 and having radii K1/µ
for agent 1 and K2/µ for agent 2. It can be proved that the

same is also true if both the agents apply (15).

C. Coverage path-planning with two agents

With the “modified MMC” of section V-B, the (orbitally

asymptotically stable) relative motion orbits can be shaped

choosing appropriately µ and Ed, and independently from the

initial conditions. On the other hand, by setting appropriate

initial conditions (positions and directions of motion) before

activating the mutual control law, one can also achieve the

desired center of motion (z0/2) and coefficients K1, K2

(which together with ρmin and ρmax define the radii of

the annular regions covered by the agents). This strategy is

well-suited for coverage path-planning problems such as the

following.

Coverage Problem 2: Determine suitable trajectories for two

mobile agents, which move at constant speeds (not necessar-

ily equal) and must maintain relative distance between ρd,min

and ρd,max, so that they jointly cover an annular region of

desired inner radius ρt,min and desired outer radius ρt,max,

centered at a target point T.

Such a problem could arise for example if the agents need to

explore (cover) an area centered at a target point (a physical

or a virtual beacon), without getting too close or too far

from it. In achieving their task, they need to avoid collisions

and maintain connectivity at all times, from which arise the

requirements on the relative distance.

Proposition 3: Assume that the requirements of Coverage

Problem 2 satisfy the following conditions (otherwise one

could relax some of the requirements till they do):

ρ2
t,max

ρ2
d,max

+
ρ2

t,min

ρ2
d,min

≥
1

2
+

1

2

(

ρ2
t,max

ρ2
d,max

−
ρ2

t,min

ρ2
d,min

)2

(23)

ρt,max

ρt,min
≤

ρ2
d,max

ρ2
d,min

≤
ρ2

t,max

ρ2
t,min

. (24)

Then Coverage Problem 2 can be solved by the following

two-step procedure:

(i) Steer the agents to new positions and orientations which

satisfy, at a certain time t′,

cos(αz−2T(t′) − αr(t
′)) = ±

1

σ(t′)

(

ρ2
t,max

ρ2
d,max

−
ρ2

t,min

ρ2
d,min

)

σ(t′) =
|k(t′)|

|g(t′)|
=

√

√

√

√2

(

ρ2
t,max

ρ2
d,max

+
ρ2

t,min

ρ2
d,min

)

− 1 (25)

z(t′) = 2T + σ(t′)2
[

kT (t′)
lT (t′)

]−1 [
r(t′) · g(t′)
r(t′) · h(t′)

]

.

(ii) Activate at time t′ the modified Mutual Motion Camou-

flage strategy given by (2) and (13), with parameters:

µ =
ln(ρd,max/ρd,min)

ρd,max − ρd,min
, Ed = ρ2

d,minδ2(t′) e−2µρd,min .

(26)

Proof: We showed in section V-B that when the

modified MMC strategy is used, the (steady state) trajec-

tories of the agents cover annular regions centered at a

point z0/2 and having radii (K1 ρd,min, K1 ρd,max) and

(K2 ρd,min, K2 ρd,max) respectively. K1, K2 and z0 depend

only on the initial conditions at the moment of activation

of the control law, as expressed in (17) and Theorem 3.

Imposing conditions (25), we make z0/2 = T so that the

annular regions are actually centered at the target point T.

Moreover we make the inner and outer radii of the union of

the annular regions covered by the agents equal to ρt,min and

ρt,max respectively. The left inequality in (24) guarantees

that the annular regions covered by the agents intersect each

other, so that the coverage task is jointly accomplished by

the two agents. The other inequalities in (23)-(24) are needed

to guarantee that the equations in (25) are well-defined. The

choice of sign in the first equation of (25) defines which of

the agents will cover the outermost region and which the

innermost. Finally the modified MMC strategy is activated

at time t′ with the choice of parameters which satisfies the

relative motion requirements (ρd,min, ρd,max).

Figure 4 shows the results of a simulation in which

Coverage Problem 2 is successfully solved by the procedure

described in Proposition 3.

We conclude this section providing some insight on how

the step (i) prescribed by Proposition 3 can be accomplished.

There are many different choices of positions and velocities

which satisfy equations (25). The second equation prescribes

a certain value for σ, i.e. the ratio between the magnitudes of

center of mass velocity k and relative velocity g. This value
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Fig. 4. Solution to Coverage Problem 2 using Proposition 3. The target is
at [-10,10] and the desired annular region to cover has radii ρt,min = 5,
ρt,max = 15; the relative distance must satisfy ρd,min = 2, ρd,max = 5.
The agents, having speeds ν1 = 0.8 and ν2 = 1.2, start from initial
conditions that satisfy (25) and mutually interact through the control law
(13). By choosing parameters µ = 0.3054, Ed = 1.3204 as prescribed by
(26), and Kd = 3, the agents begin filling the annular regions with radii
(6, 15) and (5, 12.5) respectively, jointly completing the task.

is also equal to the ratios ζ̃/ρ, ξ̃/γ and η̃/λ, where ζ̃, ξ̃, η̃ are

defined with respect to the absolute reference frame centered

at T; initial conditions satisfying (25) fall in fact within the

invariant manifold Mσ of section V-A. The first equation

provides instead a requirement on the difference between the

polar angles of r and z̃, and the third equation is equivalent

to the requirement that: αk −αg = αz̃−αr. Hence the only

conditions imposed by (25) are on the relations between r

and z̃ and between g and k (and also obviously between

h and l). Nevertheless there is complete freedom in the

choice of the relative vectors r and g; one could choose

for instance to have r(t′) = r(0) and g(t′) = g(0), i.e. to

preserve the initial relative configuration, or choose a g(t′)
with the desired magnitude δ(t′) so to affect the relative

motion orbits. Given any choice of the pair r(t′),g(t′), one

can derive the corresponding vectors z̃(t′), k(t′) and l(t′),
and then the individual positions and velocities for the agents,

which satisfy (25).

The problem then reduces to finding for each agent a

steering law which drives it to this new position and velocity,

from the initial ones. Since the agent moves at constant

speed, this problem is equivalent to finding the curve which

connects two points on the plane each with specified velocity

direction. This is the Dubins problem, whose solution is

well-known when curvature bounds are imposed (see section

13.5 of [14]). The trajectories found in this way for each

agent must be checked for possible collisions; if they are not

collision-free, the process must be repeated with a different

choice of r(t′),g(t′).

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have discussed a program of using pursuit

laws of a specific type, inspired by phenomena in nature,

to accomplish tasks of coverage by cooperative unmanned

systems (modeled here as planar interacting particles). We

have made use of reduction and phase portrait properties

in carrying out this program in a basic example of a two-

particle system. Further work is under way to investigate

many-particle analogs of cohesion by pursuit.
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