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Abstract— Pursuit strategies for interacting particles and
feedback laws to execute them are formulated in three dimen-
sions, focusing on constant bearing (CB) pursuit – a case of
interest in biology. In the analysis of such laws for the setting
of n particles engaged in cyclic pursuit, we reveal interesting
invariant manifold dynamics and associated explicit integrabil-
ity properties, as well as conditions for special solutions such
as relative equilibria.

I. INTRODUCTION

This paper explores the geometry of pursuit strategies in
three dimensions, focusing on a particular class of strategies
known as constant bearing (CB) pursuit. It also extends the
program of analysis of cyclic pursuit in [2] toward design
for collective behavior of n particles in three dimensions.
While interest in the mathematics of pursuit has a long
history (see [10]), the more recent concerns of cooperative
robotics, and problem solving using collective intelligence
(see introduction and references cited in [2]), have shaped
the course of our research. In particular, we envision pos-
sible technological applications such as collective control
of “flocks” of UAV’s operating in three-dimensional space.
In this paper, and in our previous work, a unifying theme
centers on the idea that feedback control laws that execute
pursuit strategies may serve as effective building blocks
for collective behavior in nature and in machines. Our
interest in CB pursuit as a strategy worthy of investigation is
underscored by observations of this in nature, specifically in
the high speed stoop behavior of the peregrine falcon diving
from great heights to hunt prey ([8],[9]).

The constant bearing pursuit law in the planar setting [7]
involves a relative bearing error and a term similar to the
motion camouflage law in [3]. In section III of this paper,
the appropriate extension of the cyclic CB pursuit feedback
law to three dimensions is formulated (see equation 14). This
leads to a derivation of an invariant manifold for CB pursuit
and dynamics on this manifold (see equation 17). Section
IV is devoted to the special case of n = 2 that we refer
to as mutual CB pursuit, in analogy with mutual motion
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camouflage (MMC) investigated in [1]. This case reveals the
presence of conservation laws leading to explicit integrability
of the dynamics, a key contribution of this paper. The paper
ends with conditions for existence of rectilinear and planar
circling relative equilibrium motions for cyclic CB pursuit
dynamics for general n.

II. MODELING INTERACTIONS

The evolution of a system of multiple agents moving in
three-dimensional space can be described in terms of unit-
mass particles tracing out twice continuously-differentiable
curves, with system dynamics derived from the natural Frenet
frame equations. (See, for example, [4] for details.) As in
figure 2 of [4], the state of the ith particle (i.e. agent) with
respect to a fixed inertial frame is denoted by the position
vector ri and the respective natural Frenet frames (xi,yi, zi).
If we constrain the agents to move at unit speed, then the
dynamics of a system of n agents can be described by

ṙi = xi,

ẋi = uiyi + vizi,

ẏi = −uixi,

żi = −vixi, i = 1, 2, . . . , n, (1)

where ui and vi are the natural curvatures viewed as controls
and are required to be SE(3)-invariant (i.e. invariant to
translations and rotations of the inertial frame). We define
the baseline vector ri,i+1 = ri − ri+1, with addition in the
indices interpreted as modulo n, and prohibit “sequential
colocation” (i.e. we assume |ri,i+1| > 0 for all t). This
means that we restrict our analysis away from the point of
actual capture or rendezvous, ensuring that the control laws
of section III are well-posed. Explicitly, we let the state space

Mstate =
{

(r1,x1,y1, z1, . . . , rn,xn,yn, zn) |

ri,i+1 6= 0, i = 1, 2, . . . , n
}

, (2)

where it is understood that ri ∈ R3 and that {xi,yi, zi} are
orthonormal vectors in R3 for each i. This paper is focused
on a particular setting of cyclic pursuit (i.e. agent i pursues
agent i+1 modulo n), defined by the constant bearing pursuit
strategy in section III-B.

III. PURSUIT STRATEGIES AND STEERING LAWS

Steering laws for the execution of planar pursuit strategies
under the framework described in section II have been
developed for classical pursuit (CP) and constant bearing
pursuit [7] as well as motion camouflage (MC) pursuit [3]. A
three-dimensional version of the motion camouflage pursuit
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law is also developed in [5]. Here we derive pursuit laws
for the execution of classical pursuit and constant bearing
pursuit strategies in R3.

A. Classical Pursuit

The classical pursuit strategy specifies that the pursuer
should always move directly towards the current location of
the pursuee. As in the planar case [7], we define our cost
function by

ΛCP
i = xi ·

ri,i+1

|ri,i+1|
, (3)

noting that ΛCP
i ∈ [−1, 1] and ΛCP

i = −1 corresponds to
attainment of the CP strategy. With the following notation

x̄i , xi ·
ri,i+1

|ri,i+1|
, ȳi , yi ·

ri,i+1

|ri,i+1|
, z̄i , zi ·

ri,i+1

|ri,i+1|
,

(4)

we have,
Proposition 1: Consider a two-particle system in which
(u2, v2) are arbitrary (but continuous and bounded) and
(u1, v1) are prescribed by

u1 = −µȳ1 −
1
|r|

[
z1 ·

(
ṙ× r

|r|

)]
v1 = −µz̄1 +

1
|r|

[
y1 ·

(
ṙ× r

|r|

)]
, (5)

where µ > 0 is a control gain and r , r1 − r2. Then under
the closed-loop dynamics (1), Λ̇CP

1 ≤ 0 with Λ̇CP
1 = 0 if

and only if ΛCP
1 = ±1.

Proof: We proceed by differentiating ΛCP
1 along trajectories

of the closed loop dynamics. First, note that

d

dt

(
r
|r|

)
=

w
|r|

, (6)

where w, the transverse component of the relative velocity,
is defined by

w = ṙ−
(
ṙ · r
|r|

)
r
|r|

=
r
|r|
×
(
ṙ× r

|r|

)
. (7)

(See [5] and [7].) Then differentiating ΛCP
1 we have

Λ̇CP
1 = u1ȳ1 + v1z̄1 +

1
|r|

(x1 ·w)

= −µȳ2
1 − µz̄2

1 +
1
|r|

(x1 ·w)

− 1
|r|

{[
z1 ·

(
ṙ× r

|r|

)]
ȳ1 − z̄1

[
y1 ·

(
ṙ× r

|r|

)]}
= −µ

(
1−

(
ΛCP

1

)2)
, (8)

where we have progressed from the second equality to the
third equality by writing out the full expressions for ȳ1 and
z̄1 and using the identity (a×b) · (c×d) = (a · c)(b ·d)−
(a · d)(b · c) for arbitrary vectors a,b, c,d. The claims of
Proposition 1 readily follow from (8). �

B. Definition of the Constant Bearing Pursuit strategy

In the planar case, the notion of constant bearing strategy
simply extends CP by specifying a fixed, possibly nonzero
angle between pursuer heading and the relative location of
the target. The following specifies an extension of this idea
to three dimensions.

Definition 1: Given a two-particle system with dynamics (1)
and a parameter a1 ∈ [−1, 1], we say particle 1 has attained
the CB(a1) pursuit strategy if x1 · r

|r| = a1.

Remark: Given a scalar parameter a ∈ [−1, 1] and an
arbitrary unit vector q regarded as a point on the unit sphere
S2, the set

{
y ∈ S2

∣∣∣ q · y = a
}

defines a small circle (i.e.
the intersection of a sphere with a plane that does not pass
through the center of the sphere)1. Since x1 and r

|r| are both
unit vectors, we can think of the CB(a1) pursuit strategy as
prescribing a small circle centered around the point r

|r| ∈ S2.
CB(a1) pursuit holds when x1 lies on that small circle.

Remark: Observe that this definition of the three-
dimensional CB pursuit strategy is fundamentally different
from the planar version presented in [7] (i.e. R(α)x1 · r

|r| =
−1, where R(α)x1 is the vector x1 rotated counterclockwise
in the plane by the angle α) in that the planar version
prescribed not only a constant bearing angular offset but also
a particular direction (i.e. counterclockwise) for the offset.
We can relate the CB strategy presented here to the planar
strategy as follows. Given unit vectors x1 and r

|r| in the plane
and the two statements R(α)x1 · r

|r| = −1 and x1 · r
|r| = a,

we seek to define the relationship between α and a. If we
define θ as the signed angle (CCW rotation positive) from
x1 to r

|r| , then cos θ = a and |θ − α| = π, i.e.

cos(θ − α) = cos θ cos α + sin θ sinα = −1. (9)

This relationship holds only if (cos α, sinα) =
−(cos θ, sin θ), and since cos θ = a and sin θ = ±

√
1− a2,

the two discrete possibilities are given by (cos α, sinα) =
(−a,∓

√
1− a2). Therefore the CB strategy of Definition 1

differs from the planar strategy (in [7]) in that it allows for
two discrete possibilities for pursuit geometries as opposed
to the single geometry prescribed by the planar strategy.

We define a CB cost function for agent i by

Λi =
1
2

[(
xi ·

ri,i+1

|ri,i+1|

)
− ai

]2
=

1
2

(x̄i − ai)
2
, (10)

with 0 ≤ Λi ≤ max
[
1
2 (1− ai)2, 1

2 (−1− ai)2
]
. Then the

CB pursuit strategy of Definition 1 is equivalent to Λi = 0.

Remark: At first glance, it may appear that a viable alterna-
tive definition for the three-dimensional CB pursuit strategy
is obtained by letting Λ̃ , Bx1 · r

|r| , where B ∈ SO(3) (the
rotation group in three dimensions), and then defining the
CB pursuit strategy by Λ̃ = −1. This definition is appealing

1More precisely, the set
{
y ∈ S2

∣∣∣ q · y = a
}

describes a small circle
only if a 6= 0. For a = 0, it defines a great circle.
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since it is the obvious extension of the previously mentioned
planar CB pursuit strategy. However, a few straightforward
calculations reveal that Λ̃ is not invariant to rotations of
the coordinate frame (i.e. not SO(3)-invariant) and therefore
all associated pursuit laws will be inadmissible under our
framework (unless B is the identity matrix).

C. A feedback law for CB Pursuit

Proposition 2: Consider a two-particle system in which
(u2, v2) are arbitrary (but continuous and bounded) and
(u1, v1) are prescribed by

u1 = −µ1

(
x̄1 − a1

)
ȳ1 −

1
|r|

[
z1 ·

(
ṙ× r

|r|

)]
v1 = −µ1

(
x̄1 − a1

)
z̄1 +

1
|r|

[
y1 ·

(
ṙ× r

|r|

)]
, (11)

where µ1 > 0 is a control gain. Then under the closed-loop
dynamics (1), Λ̇1 ≤ 0 with Λ̇1 = 0 if and only if Λ1 = 0 or
x1 · r

|r| = ±1.

Proof: By a series of calculations analogous to the derivation
of (8), it is possible to show that

Λ̇1 = −µ1 (x̄1 − a1)
2 (1− x̄2

1

)
= −2µ1Λ1

(
1− x̄2

1

)
, (12)

from which the result follows. �

D. An invariant submanifold for cyclic CB pursuit

As in previous work on planar cyclic pursuit [2], we define
the submanifold of system states for which each agent i
pursues agent (i + 1) modulo n with a pursuit law of the
form (11), and all agents have attained CB pursuit. Since
Λi = 0 if and only if agent i has attained CB pursuit of
agent (i + 1), we define the submanifold MCB(a) ⊂ Mstate

by

MCB(a) =
{

(r1,x1,y1, z1, . . . , rn,xn,yn, zn) ∈ Mstate |

Λi = 0, i = 1, 2, . . . , n
}

, (13)

where a = {a1, a2, . . . , an}. It follows from an argument
analogous to that in Proposition 2 that MCB(a) is an
invariant manifold under cyclic pursuit dynamics (in the
sense that the closed-loop vector field is tangent to the
manifold). In the following proposition we prove asymptotic
convergence to MCB(a) under suitable conditions.

Proposition 3: Consider the n-particle cyclic CB pursuit
system governed by the closed-loop dynamics (1) with
curvature controls for the ith agent prescribed by

ui = −µi (x̄i − ai) ȳi −
1

|ri,i+1|

[
zi ·
(
ṙi,i+1 ×

ri,i+1

|ri,i+1|

)]
vi = −µi (x̄i − ai) z̄i +

1
|ri,i+1|

[
yi ·

(
ṙi,i+1 ×

ri,i+1

|ri,i+1|

)]
,

(14)

where µi > 0 and we assume ai 6= ±1. Define the set

Ω =
{(

r1,x1,y1, z1, . . . , rn,xn,yn, zn

)
∈ Mstate

∣∣
Λi ≤ −ε + min

[
1
2
(−1− ai)2,

1
2
(1− ai)2

]
,

i = 1, 2, . . . , n
}

(15)

for 0 < ε � mini∈{1,2,...,n}
1
2 (±1−ai)2. Then any bounded

trajectory starting in Ω converges to MCB(a).

Proof: Note that Ω is closed (but not necessarily bounded)
and excludes states for which x̄i = ±1 for any i. Making
use of (10) we define Λ =

∑n
i=1 Λi, observing (from (12))

that

Λ̇ = −2
n∑

i=1

µiΛi

(
1− x̄2

i

)
(16)

and therefore Λ̇ ≤ 0 on Ω with Λ̇ = 0 on Ω if and only if
Λi = 0, i = 1, 2, . . . , n. The hypothesis of boundedness of
the trajectory ensures by Birkhoff’s theorem the ω-limit set
is nonempty, compact and invariant. Asymptotic convergence
to MCB(a) follows as in the steps in the proof of LaSalle’s
Invariance Principle [6]. �

Note that on MCB(a) the terms of the controls (14) which
involve the gains µi are identically zero, and therefore we
can formulate reduced (closed-loop) dynamics on MCB(a)

for i = 1, 2, . . . , n as

ṙi = xi,

ẋi =
−1

|ri,i+1|

[(
zi ·
(
ṙi,i+1 ×

ri,i+1

|ri,i+1|

))
yi

−
(
yi ·

(
ṙi,i+1 ×

ri,i+1

|ri,i+1|

))
zi

]

ẏi =
1

|ri,i+1|

[
zi ·
(
ṙi,i+1 ×

ri,i+1

|ri,i+1|

)]
xi,

żi =
−1

|ri,i+1|

[
yi ·

(
ṙi,i+1 ×

ri,i+1

|ri,i+1|

)]
xi. (17)

IV. MUTUAL CB PURSUIT

As a first step towards understanding the behavior of our
system under cyclic CB pursuit, we analyze the two-particle
“mutual CB pursuit” case. (This can be compared with the
analysis of “mutual motion camouflage” in [1].)

For analysis of two-particle systems in three dimensions,
[4] demonstrates the utility of considering the reduced system
(r,x1,x2) evolving on R3 × S2 × S2, where r , r1 − r2.
Starting from (17), we derive the (r,x1,x2) dynamics on
MCB(a) by first computing

ẋ1 =
1
|r|

[
z1

((
ṙ× r

|r|

)
· y1

)
− y1

((
ṙ× r

|r|

)
· z1

)]
=

1
|r|

[
x1 ×

(
ṙ× r

|r|

)]
. (18)

Here we have made use of the so-called BAC-CAB identity.
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Doing similar computations for particle 2, we arrive at

ṙ = x1 − x2,

ẋ1 =
1
|r|

[
x1 ×

(
ṙ× r

|r|

)]
=

1
|r|

(x1 × `) ,

ẋ2 =
1
|r|

[
x2 ×

(
ṙ× r

|r|

)]
=

1
|r|

(x2 × `) , (19)

with ` , ṙ × r
|r| and initial conditions governed by the

MCB(a) constraints.

A. Explicit solutions for system behavior on MCB(a)

As an aid to intuition, we note that the dynamics of the
baseline vector r can be reformulated as

ṙ =
1
|r|

(
ṙ · r
|r|

)
r− 1

|r|

(
ṙ× r

|r|

)
× r. (20)

(See [5] for background and a similar approach.) The first
term captures the lengthening or shortening of the baseline
vector r, and the second term is related to the angular
velocity of r (with r viewed as an extensible rod from the
perspective of particle 1). Addressing the former term, we
first note that ṙ · r

|r| = d
dt (|r|). Defining ρ , |r|, we have

ρ̇ = (x1 − x2) ·
r
|r|

= a1 + a2, (21)

and obtain

ρ(t) = (a1 + a2) t + ρ0, for ρ0 = |r(0)| . (22)

Turning to the second term in (20), by taking the derivative
of the vector cross product ` = ṙ× r

|r| along trajectories of
(19), one can show that ` is in fact a fixed vector. Substituting
this result as well as our results from (21) and (22) into (20),
we can express our r dynamics as

ṙ(t) =
1

a+t + ρ0

[
a+1− ˆ̀

]
r(t), (23)

where we denote a+ = a1+a2 and make use of the operator
ˆ: R3 −→ so(3) which maps any 3-vector Γ = (Γ1,Γ2,Γ3)
to a skew-symmetric matrix defined by

Γ̂ =

 0 −Γ3 Γ2

Γ3 0 −Γ1

−Γ2 Γ1 0

 . (24)

Since a+1 and ˆ̀ commute, for a+ 6= 0 we can derive an
explicit solution for r(t) by

r(t) = exp
(∫ t

0

a+

a+τ + ρ0
dτ

)
exp

(
−ˆ̀
∫ t

0

1
a+τ + ρ0

dτ

)
r(0)

=
a+t + ρ0

ρ0
exp

(
− 1

a+

ˆ̀ ln
(

a+t + ρ0

ρ0

))
r(0). (25)

A straightforward calculation based on (23) easily yields the
result for the a+ = 0 case, and we can therefore write our

complete solution as

r(t) =


a+t+ρ0

ρ0
exp

(
− 1

a+
ˆ̀ ln

(
a+t+ρ0

ρ0

))
r0 for a+ 6= 0

exp
(
− 1

ρ0
ˆ̀t
)
r0 for a+ = 0,

for r(0) = r0, ρ0 = |r0| , xi(0) = x0
i ,

` =
(
x0

1 − x0
2

)
× r0

|r0|
. (26)

Similarly, by analogous calculations from (19) we have

xi(t) =

exp
(
− 1

a+
ˆ̀ ln

(
a+t+ρ0

ρ0

))
x0

i for a+ 6= 0

exp
(
− 1

ρ0
ˆ̀t
)
x0

i for a+ = 0.
(27)

B. Center of mass trajectory

Prior to stating and proving a proposition concerning
the motion of the center of mass, we note the following
calculation. Define Θ ∈ [−1, 1] as

Θ , (x1 × x2) ·
r
|r|

, (28)

the signed volume of the parallelepiped with edges
x1,x2,

r
|r| . It can then be demonstrated that

Θ = −x1 · ` = −x2 · `. (29)

By differentiating (29) along trajectories of (19), one can
readily show that Θ is a constant value on MCB(a).

Proposition 4: Consider a two-particle system operating on
MCB(a) according to the closed-loop mutual CB pursuit
dynamics (19) with initial conditions ri(0) = r0

i and xi(0) =
x0

i , i = 1, 2. Define the change of coordinates r̃i , ri − r0
c ,

where r0
c is defined by

r0
c ,

{
z0 − σ0

(
r0
|r0| ×

`
|`|

)
for ` 6= 0,

0 for ` = 0,
(30)

with z0 = 1
2

(
r0
1 + r0

2

)
, σ0 = − (a1−a2)

2|`| ρ0, and r0, ρ0, and
` as in (26). Then the trajectory of the center of mass z ,
1
2 (r1 + r2) can be given in the new coordinates z̃ = z− r0

c

by the following:

(i.) if ` = 0, then z̃(t) = z̃0 +
1
2
(
x0

1 + x0
2

)
t

(ii.) if ` 6= 0, but a− = 0, then z̃(t) = − Θ
|`|2

`t

(iii.) if ` 6= 0, a− 6= 0, but a+ = 0, then

z̃(t) = exp
(
− 1

ρ0

ˆ̀t
)

z̃0 −
Θ
|`|2

`t

(iv.) if `, a− and a+ are all nonzero, then

z̃(t) = c(t) exp
(
− 1

a+

ˆ̀ ln (c(t))
)

z̃0 −
Θ
|`|2

`t, (31)

with a+ , a1 + a2, a− , a1 − a2, and c(t) = a+t+ρ0
ρ0

.

Proof: Assume ` 6= 0. We will demonstrate that the center
of mass follows either a circling, helical, or spiral trajectory
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centered on the point r0
c . We can resolve z̃ into component

vectors as

z̃ =
(
z̃ · r
|r|

)
r
|r|

+
(
z̃ · `

|`|

)
`

|`|

+
[
z̃ ·
(

r
|r|
× `

|`|

)](
r
|r|
× `

|`|

)
. (32)

The main thrust of the proof is to demonstrate that the first
term is identically zero, the second term is linear in t, and
that self-contained dynamics (and a resulting closed-form
solution) can be derived for the third term. We address the
first term by defining γ1 ,

(
z̃ · r

|r|

)
and γ2 , γ̇1. By direct

calculation, one can show that

γ2 =
1
2
a− +

1
ρ

(z̃ · ṙ− γ1a+) (33)

and that the system (γ1, γ2) evolves according to

γ̇1 = γ2; γ̇2 = −γ1
|`|2

ρ2
− γ2

a+

ρ
. (34)

By (30) we have

γ1(0) = σ0

(
r0

|r0|
× `

|`|

)
· r0

|r0|
= 0,

γ2(0) =
a−
2

+
σ0

ρ0

[(
r0

|r0|
× `

|`|

)
· ṙ(0)

]
=

a−
2
− a−

2 |`|

[(
ṙ(0)× r0

|r0|

)
· `

|`|

]
= 0. (35)

Since (γ1, γ2) = (0, 0) is an equilibrium point for (34), we
have γ1 =

(
z̃ · r

|r|

)
≡ 0, and (32) becomes

z̃ =
(
z̃ · `

|`|

)
`

|`|
+
[
z̃ ·
(

r
|r|
× `

|`|

)](
r
|r|
× `

|`|

)
. (36)

Now note that

d

dt

(
z̃ · `

|`|

)
=

1
2

(x1 + x2) ·
`

|`|
= − Θ

|`|
, (37)

and therefore

z̃(t) · `

|`|
= − Θ

|`|
t + σ0

(
r0

|r0|
× `

|`|

)
· `

|`|
= − Θ

|`|
t. (38)

We address the third term in (32) by first defining

z̄ , z̃−
(
z̃ · `

|`|

)
`

|`|
=
[
z̃ ·
(

r
|r|
× `

|`|

)](
r
|r|
× `

|`|

)
.

(39)

Letting σ , z̃ ·
(

r
|r| ×

`
|`|

)
, we observe that

σ(0) = σ0

(
r0

|r0|
× `

|`|

)
·
(

r0

|r0|
× `

|`|

)
= σ0. (40)

By direct calculation we have

σ̇ = − 1
2 |`|

a−a+, (41)

and therefore

σ(t) = σ(0)− 1
2 |`|

a−a+t =
σ0

ρ0
(ρ0 + a+t) = − a−

2 |`|
ρ(t).

(42)

If a− = 0, then the third term of (32) is identically zero
and (38) yields the the second claim of our proposition. If
a− 6= 0, then one can verify (by way of (6) and the Jacobi
identity) that

˙̄z =
1
ρ

[
a+1− ˆ̀

]
z̄, (43)

and recognizing (43) as the same form as (23), we therefore
have the analogous closed-form expression for z̄. The third
and fourth claims of Proposition 4 then follow from (38),
(39), and (43), along with the fact that z̃(0) = z̄(0). Finally,
if ` = 0, we have xi(t) = x0

i (from (27)) and therefore
˙̃z(t) = 1

2

(
x0

1 + x0
2

)
, establishing the first claim of the

proposition. �

Remark: System behavior can be classified in terms of the
initial conditions (parametrized by ` and Θ) and the param-
eters a+ and a−. The sign and magnitude of ` determine
whether the baseline vector r will rotate (` 6= 0) as well as
the direction of rotation. Θ determines whether r,x1 and x2

will evolve in a common plane. The parameter a+ determines
the rate of change of the inter-particle distance, and a−
determines if the center of mass will rotate. Figure 1 displays
some of the possible system trajectories, including rectilinear
and circling equilibria as well as an expanding spiral.

V. RELATIVE EQUILIBRIA FOR THE n-PARTICLE CASE

The analysis in [4] describes the possible types of relative
equilibria for an n-particle system evolving according to
(1) with SE(3)-invariant controls. These relative equilibria
correspond to

1) rectilinear formations (i.e., all particles move in the
same direction with arbitrary relative positions),

2) circling formations (i.e., all particles move on circular
orbits with a common radius, in planes perpendicular
to a common axis),

3) helical formations (i.e., all particles follow circular
helices with the same radius, pitch, axis, and axial
direction of motion).

As in [4], we can express our dynamics (1) in terms of
group variables g1, g2, . . . , gn ∈ G = SE(3) as left-invariant
systems

ġi = giξi, i = 1, 2, . . . , n, (44)

where ξi ∈ g = the Lie algebra of G. Then shape variables
can be defined by

g̃i = g−1
i gi+1, i = 1, 2, . . . , n, (45)

with corresponding dynamics

˙̃gi = g̃iξ̃i, i = 1, 2, . . . , n, (46)

where ξ̃i = ξi+1 − Adg̃−1
i

ξi ∈ g. Relative equilibria for the
full dynamics are equilibria for the shape dynamics (46).
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(a) Rectilinear equilibrium (` = 0) (b) Circling equilibrium (` 6= 0; a− 6= 0;
Θ = 0; a+ = 0)

(c) Expanding spiral (`, Θ, a−, a+ 6= 0)

Fig. 1. These MATLAB simulations illustrate various types of trajectories in terms of initial conditions (` and Θ) and parameter values (a+ and a−).

In our planar discussion of cyclic pursuit [2], we chose
appropriate scalar variables to parametrize the shape space
and aid in the analysis. However, in the current setting it
is not readily apparent how best to parametrize the shape
space, and this continues as a topic of ongoing research.
Still, we can make the following statements concerning the
existence of particular types of relative equilibria in the three-
dimensional setting.

Proposition 5: Given {a1, a2, . . . , an}, a relative equilibrium
corresponding to rectilinear motion on MCB(a) under closed-
loop cyclic CB pursuit dynamics (17) exists if and only if
there exists a set of positive constants {σ1, σ2, . . . , σn} such
that

∑n
i=1 σiai = 0.

Proposition 6: Given {a1, a2, . . . , an}, define
{α1, α2, . . . , αn} ∈ (0, 2π) by (cos αi, sinαi) =
(−ai,

√
1− a2

i ). Then a planar circling relative equilibrium
on MCB(a) under closed-loop cyclic CB pursuit dynamics
(17) exists if and only if

i. ai 6= ±1, i = 1, 2, . . . , n; ii. sin

(
n∑

i=1

αi

)
= 0. (47)

Proof of Propositions 5 and 6: The proof for each
proposition follows the same lines as the corresponding
proof for the planar case in [2] and is omitted here due
to space constraints. Note that the angle αi as defined in
Proposition 6 matches the notation in the planar proof, as
discussed in section III. (The choice of sinαi =

√
1− a2

i

corresponds to CCW circling equilibria, while choosing
sinαi = −

√
1− a2

i refers to CW circling equilibria.) Also,
note that Proposition 6 addresses the existence of circling
equilibria on a common plane (rather than the more general
definition of circling equilibria that permits multiple planes
perpendicular to a common axis), and therefore the proof is
simplified by assuming (without loss of generality) that the
circling equilibrium is centered on the origin and evolves on
the horizontal plane. In particular, this enables us to identify
the rotation matrix R(αi) ∈ SO(2) (from the planar proof)
with the corresponding element in SO(3) by the obvious
inclusion map.

Remark: Observe that the constraint of Proposition 5 is
equivalent to requiring that either ai = 0, i = 1, 2, . . . , n or

that there exists j, k ∈ [1, 2, . . . , n] such that ajak < 0. Also,
observe that the condition in Proposition 5 is not mutually
exclusive with the conditions of Proposition 6, in contrast
to the analogous planar propositions stated in [2].

VI. CONCLUSION

In this paper, we have extended to three dimensions the
formulation and analysis of constant bearing cyclic pursuit
for n interacting particles. We demonstrated the existence
of an invariant manifold and then proved a result on con-
vergence to that manifold. In the special case of n = 2,
conservation laws give rise to integrability of the dynamics
on the invariant manifold. The structure of the reduced
dynamics on the invariant manifold for the setting of general
n appears to also permit conserved quantities. Further details
along these lines are under investigation. The results of this
paper contribute to our understanding of the idea that pursuit
strategies offer building blocks for collective behavior.
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