Get the Flash Player to see this rotator.
 
 


search


Robotics     UMD

Search robotics news archives

Bookmark and Share

logo



ISR-affiliated Assistant Professor Nikhil Chopra (ME) is the principal investigator of a three-year, $325K grant from the National Science Foundation for ?Tracking Control of Nonlinear Systems Under Sensing, Computational, and Communication Constraints.? The grant is part of NSF?s Energy, Power and Adaptive Systems program.

The research will investigate control algorithms for resource constrained trajectory tracking in nonlinear systems. Tracking controllers are widely utilized in several applications, for example in robotic systems for manufacturing applications. However, the implementation of these controllers is subjected to several practical constraints that limit overall system performance. In applications, such as robotic systems for industrial automation, these problems have prevented the realization of high precision tracking, thereby stymieing the potential impact of robotic systems. In contrast to time-triggered periodic sampling, a Lyapunov function based event-triggered approach will be utilized for addressing resource constrained tracking in nonlinear systems.

The research deals with the design of tracking controllers for nonlinear systems under sensor, computational, and communication constraints. The approach is based on event-triggered controllers for trajectory tracking in nonlinear systems and by co-designing event- triggers and quantizers for nonlinear systems. The research will lead to the development of a hybrid control framework where various resource constraints can be treated in a unified manner. This approach will provide a rigorous solution to the important problem of tracking in robotic systems under sensor constraints, thereby significantly impacting industrial automation.

The understanding of resource constrained trajectory tracking using an event-triggered controller will provide a useful alternative to the classical time-triggered control framework. The research should significantly enhance the tracking performance of robotic systems under sensor constraints and render them viable for several emerging manufacturing applications.



Related Articles:
Maryland Robotics Center featured on live TV broadcast
S.K. Gupta interviewed for robotics story in The Economist
UMD's Autonomous Vehicle Laboratory Featured in The Accelerator
Bergbreiter wins Clark School MRI award
Robo Raven highlighted in children's magazine
Bergbreiter one of '25 women in robotics you need to know about'
Exaggerated gait allows limbless R2G2 robot to move quickly in confined spaces, rough terrain
Bruck, Smela, Yu receive NSF grant for compliant multifunctional robotic structures
Galloway, Justh, Krishnaprasad publish chasing and flocking research in Proceedings of the Royal Society A
UAE students, Northrop Grumman engineers tour robotics laboratories

August 21, 2012


«Previous Story  

 

 

Current Headlines

Three UMD Undergraduates Win Top Prize at LAHacks

Clark School Welcomes Corporate Partners for Summit

UMD Hosts Regional FIRST Robotics Competition

Bergbreiter's Robotics Research Featured in NSF's Science Nation

S.K. Gupta interviewed for robotics story in The Economist

Robotic fish research profiled in Baltimore Sun

UMD to Host FIRST Robotics Regional Competition

UMD's Autonomous Vehicle Laboratory Featured in The Accelerator

Clark School Highly Ranked By Best Value Schools

UMD Hackathon Team Featured on NPR

 
 
Back to top  
Clark School Home UMD Home ISR Home